757 resultados para rutile


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nilgiri Block, southern India is an exhumed lower crust formed through arc magmatic processes in the Neoarchean. The main lithologies in this terrane include charnockites, gneisses, volcanic tuff, metasediments, banded iron formation and mafic-ultramafic bodies. Mafic-ultramafic rocks are present towards the northern and central part of the Nilgiri Block. We examine the evolution of these mafic granulites/metagabbros by phase diagram modeling and U-Pb sensitive high resolution ion microprobe (SHRIMP) dating. They consist of a garnet-clinopyroxene-plagioclase-hornblende-ilmenite +/- orthopyroxene +/- rutile assemblage. Garnet and clinopyroxene form major constituents with labradorite and orthopyroxene as the main mineral inclusions. Labradorite, identified using Raman analysis, shows typical peaks at 508 cm(-1), 479 cm(-1), 287 cm(-1) and 177 cm(-1). It is stable along with orthopyroxene towards the low-pressure high-temperature region of the granulite fades (M1 stage). Subsequently, orthopyroxene reacted with plagioclase to form the peak garnet + clinopyroxene + rutile assemblage (M2 stage). The final stage is represented by amphibolite facies-hornblende and plagioclase-rim around the garnet-clinopyroxene assemblage (M3 stage). Phase diagram modeling shows that these mafic granulites followed an anticlockwise P-T-t path during their evolution. The initial high-temperature metamorphism (M1 stage) was at 850-900 degrees C and similar to 9 kbar followed by high-pressure granulite fades metamorphism (M2 stage) at 850-900 degrees C and 14-15 kbar. U-Pb isotope studies of zircons using SHRIMP revealed late Neoarchean to early paleoproterozoic ages of crystallization and metamorphism respectively. The age data shows that these mafic granulites have undergone arc magmatism at ca. 25392 +/- 3 Ma and high-temperature, high-pressure metamorphism at ca. 2458.9 +/- 8.6 Ma. Thus our results suggests a late Neoarchean arc magmatism followed by early paleoproterozoic high-temperature, high-pressure granulite facies metamorphism due to the crustal thickening and suturing of the Nilgiri Block onto the Dharwar Craton. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I.

We have developed a technique for measuring the depth time history of rigid body penetration into brittle materials (hard rocks and concretes) under a deceleration of ~ 105 g. The technique includes bar-coded projectile, sabot-projectile separation, detection and recording systems. Because the technique can give very dense data on penetration depth time history, penetration velocity can be deduced. Error analysis shows that the technique has a small intrinsic error of ~ 3-4 % in time during penetration, and 0.3 to 0.7 mm in penetration depth. A series of 4140 steel projectile penetration into G-mixture mortar targets have been conducted using the Caltech 40 mm gas/ powder gun in the velocity range of 100 to 500 m/s.

We report, for the first time, the whole depth-time history of rigid body penetration into brittle materials (the G-mixture mortar) under 105 g deceleration. Based on the experimental results, including penetration depth time history, damage of recovered target and projectile materials and theoretical analysis, we find:

1. Target materials are damaged via compacting in the region in front of a projectile and via brittle radial and lateral crack propagation in the region surrounding the penetration path. The results suggest that expected cracks in front of penetrators may be stopped by a comminuted region that is induced by wave propagation. Aggregate erosion on the projectile lateral surface is < 20% of the final penetration depth. This result suggests that the effect of lateral friction on the penetration process can be ignored.

2. Final penetration depth, Pmax, is linearly scaled with initial projectile energy per unit cross-section area, es , when targets are intact after impact. Based on the experimental data on the mortar targets, the relation is Pmax(mm) 1.15es (J/mm2 ) + 16.39.

3. Estimation of the energy needed to create an unit penetration volume suggests that the average pressure acting on the target material during penetration is ~ 10 to 20 times higher than the unconfined strength of target materials under quasi-static loading, and 3 to 4 times higher than the possible highest pressure due to friction and material strength and its rate dependence. In addition, the experimental data show that the interaction between cracks and the target free surface significantly affects the penetration process.

4. Based on the fact that the penetration duration, tmax, increases slowly with es and does not depend on projectile radius approximately, the dependence of tmax on projectile length is suggested to be described by tmax(μs) = 2.08es (J/mm2 + 349.0 x m/(πR2), in which m is the projectile mass in grams and R is the projectile radius in mm. The prediction from this relation is in reasonable agreement with the experimental data for different projectile lengths.

5. Deduced penetration velocity time histories suggest that whole penetration history is divided into three stages: (1) An initial stage in which the projectile velocity change is small due to very small contact area between the projectile and target materials; (2) A steady penetration stage in which projectile velocity continues to decrease smoothly; (3) A penetration stop stage in which projectile deceleration jumps up when velocities are close to a critical value of ~ 35 m/s.

6. Deduced averaged deceleration, a, in the steady penetration stage for projectiles with same dimensions is found to be a(g) = 192.4v + 1.89 x 104, where v is initial projectile velocity in m/s. The average pressure acting on target materials during penetration is estimated to be very comparable to shock wave pressure.

7. A similarity of penetration process is found to be described by a relation between normalized penetration depth, P/Pmax, and normalized penetration time, t/tmax, as P/Pmax = f(t/tmax, where f is a function of t/tmax. After f(t/tmax is determined using experimental data for projectiles with 150 mm length, the penetration depth time history for projectiles with 100 mm length predicted by this relation is in good agreement with experimental data. This similarity also predicts that average deceleration increases with decreasing projectile length, that is verified by the experimental data.

8. Based on the penetration process analysis and the present data, a first principle model for rigid body penetration is suggested. The model incorporates the models for contact area between projectile and target materials, friction coefficient, penetration stop criterion, and normal stress on the projectile surface. The most important assumptions used in the model are: (1) The penetration process can be treated as a series of impact events, therefore, pressure normal to projectile surface is estimated using the Hugoniot relation of target material; (2) The necessary condition for penetration is that the pressure acting on target materials is not lower than the Hugoniot elastic limit; (3) The friction force on projectile lateral surface can be ignored due to cavitation during penetration. All the parameters involved in the model are determined based on independent experimental data. The penetration depth time histories predicted from the model are in good agreement with the experimental data.

9. Based on planar impact and previous quasi-static experimental data, the strain rate dependence of the mortar compressive strength is described by σf0f = exp(0.0905(log(έ/έ_0) 1.14, in the strain rate range of 10-7/s to 103/s (σ0f and έ are reference compressive strength and strain rate, respectively). The non-dispersive Hugoniot elastic wave in the G-mixture has an amplitude of ~ 0.14 GPa and a velocity of ~ 4.3 km/s.

Part II.

Stress wave profiles in vitreous GeO2 were measured using piezoresistance gauges in the pressure range of 5 to 18 GPa under planar plate and spherical projectile impact. Experimental data show that the response of vitreous GeO2 to planar shock loading can be divided into three stages: (1) A ramp elastic precursor has peak amplitude of 4 GPa and peak particle velocity of 333 m/s. Wave velocity decreases from initial longitudinal elastic wave velocity of 3.5 km/s to 2.9 km/s at 4 GPa; (2) A ramp wave with amplitude of 2.11 GPa follows the precursor when peak loading pressure is 8.4 GPa. Wave velocity drops to the value below bulk wave velocity in this stage; (3) A shock wave achieving final shock state forms when peak pressure is > 6 GPa. The Hugoniot relation is D = 0.917 + 1.711u (km/s) using present data and the data of Jackson and Ahrens [1979] when shock wave pressure is between 6 and 40 GPa for ρ0 = 3.655 gj cm3 . Based on the present data, the phase change from 4-fold to 6-fold coordination of Ge+4 with O-2 in vitreous GeO2 occurs in the pressure range of 4 to 15 ± 1 GPa under planar shock loading. Comparison of the shock loading data for fused SiO2 to that on vitreous GeO2 demonstrates that transformation to the rutile structure in both media are similar. The Hugoniots of vitreous GeO2 and fused SiO2 are found to coincide approximately if pressure in fused SiO2 is scaled by the ratio of fused SiO2to vitreous GeO2 density. This result, as well as the same structure, provides the basis for considering vitreous Ge02 as an analogous material to fused SiO2 under shock loading. Experimental results from the spherical projectile impact demonstrate: (1) The supported elastic shock in fused SiO2 decays less rapidly than a linear elastic wave when elastic wave stress amplitude is higher than 4 GPa. The supported elastic shock in vitreous GeO2 decays faster than a linear elastic wave; (2) In vitreous GeO2 , unsupported shock waves decays with peak pressure in the phase transition range (4-15 GPa) with propagation distance, x, as α 1/x-3.35 , close to the prediction of Chen et al. [1998]. Based on a simple analysis on spherical wave propagation, we find that the different decay rates of a spherical elastic wave in fused SiO2 and vitreous GeO2 is predictable on the base of the compressibility variation with stress under one-dimensional strain condition in the two materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject.

Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods.

We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts the Fourier transformed velocity autocorrelation method to handle the big data of time-dependent atomic velocities from MD calculations, and efficiently reconstructs the phonon DOS and phonon dispersion relations. Our calculations can reproduce the phonon frequency shifts and lifetime broadenings very well at various temperatures.

To understand non-harmonic interactions in a microscopic way, we have developed a numerical fitting method to analyze the decay channels of phonon-phonon interactions. Based on the quantum perturbation theory of many-body interactions, this method is used to calculate the three-phonon and four-phonon kinematics subject to the conservation of energy and momentum, taking into account the weight of phonon couplings. We can assess the strengths of phonon-phonon interactions of different channels and anharmonic orders with the calculated two-phonon DOS. This method, with high computational efficiency, is a promising direction to advance our understandings of non-harmonic lattice dynamics and thermal transport properties.

These experimental techniques and theoretical methods have been successfully performed in the study of anharmonic behaviors of metal oxides, including rutile and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For example, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic behavior of the B1g mode can be explained by the volume effects on quasiharmonic force constants, and by the explicit cubic and quartic anharmonicity. For rutile tin dioxide (SnO2), the broadening of the B2g mode with temperature showed an unusual concave downwards curvature. This curvature was caused by a change with temperature in the number of down-conversion decay channels, originating with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong anharmonic effects were found for both phonons and for the negative thermal expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conduction through TiO2 films of thickness 100 to 450 Å have been investigated. The samples were prepared by either anodization of Ti evaporation of TiO2, with Au or Al evaporated for contacts. The anodized samples exhibited considerable hysteresis due to electrical forming, however it was possible to avoid this problem with the evaporated samples from which complete sets of experimental results were obtained and used in the analysis. Electrical measurements included: the dependence of current and capacitance on dc voltage and temperature; the dependence of capacitance and conductance on frequency and temperature; and transient measurements of current and capacitance. A thick (3000 Å) evaporated TiO2 film was used for measuring the dielectric constant (27.5) and the optical dispersion, the latter being similar to that for rutile. An electron transmission diffraction pattern of a evaporated film indicated an essentially amorphous structure with a short range order that could be related to rutile. Photoresponse measurements indicated the same band gap of about 3 ev for anodized and evaporated films and reduced rutile crystals and gave the barrier energies at the contacts.

The results are interpreted in a self consistent manner by considering the effect of a large impurity concentration in the films and a correspondingly large ionic space charge. The resulting potential profile in the oxide film leads to a thermally assisted tunneling process between the contacts and the interior of the oxide. A general relation is derived for the steady state current through structures of this kind. This in turn is expressed quantitatively for each of two possible limiting types of impurity distributions, where one type gives barriers of an exponential shape and leads to quantitative predictions in c lose agreement with the experimental results. For films somewhat greater than 100 Å, the theory is formulated essentially in terms of only the independently measured barrier energies and a characteristic parameter of the oxide that depends primarily on the maximum impurity concentration at the contacts. A single value of this parameter gives consistent agreement with the experimentally observed dependence of both current and capacitance on dc voltage and temperature, with the maximum impurity concentration found to be approximately the saturation concentration quoted for rutile. This explains the relative insensitivity of the electrical properties of the films on the exact conditions of formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]El proceso de soldadura más común es la soldadura por arco metálico con electrodos revestidos. A veces ese revestimiento contiene materiales radiactivos de origen natural (NORMs). En España los electrodos más utilizados son los recubiertos de rutilo mezclado con otros materiales. El rutilo contiene algunos radionúclidos naturales detectables, por lo que puede ser considerado como un NORM. Este trabajo principalmente se centra en la aplicación de la metodología expuesta en la Guía de Seguridad 11.3 del Consejo de Seguridad Nuclear (Metodología para la evaluación del impacto radiológico en las industrias NORM), como una herramienta para obtener las dosis en una fábrica que produce este tipo de electrodo y evaluar el impacto radiológico en una instalación específica. Para ello, se aplicaron en dicha instalación los pasos requeridos por la metodología para su cumplimiento. Se analizaron los beneficios inherentes al estudio y se identificaron las zonas de radiación más altas así como la posición de los trabajadores. Habiendo hecho uso de evaluaciones de dosis llevadas a cabo con anterioridad por otros procedimientos, métodos de simulación, se establecieron las pautas de protección radiológica a seguir para el cumplimiento de dicha guía, mediante la colocación de dosímetros personales y monitores de radiación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用射频磁控溅射法室温下在Si(100)衬底上制备了N掺杂的TiO2薄膜,并且采用x射线衍射(XRD)、X射线光电子能谱(XPS)和透射光谱对薄膜进行了表征。XRD结果表明在纯Ar和N2(33.3%)/Ar气氛下制备的TiO2-xNx薄膜均为单一的金红石相,薄膜结晶性良好,呈高度(211)择优取向,而在N2(50.0%)/Ar下制备的薄膜结晶性明显变差;对于N掺杂的TiO2薄膜,XPS表明部分N原子进入TiO2晶格,并且以N—Ti—O、N—O键以及间隙式N原子形式存在;透射光谱表明掺N后的TiO2薄膜吸收边发生了红移。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

abstract {The optical property, structure, surface properties (roughness and defect density) and laser-induced damage threshold (LIDT) of TiO2 films deposited by electronic beam (EB) evaporation of TiO2 (rutile), TiO2 (anatase) and TiO2 + Ta2O5 composite materials are comparatively studied. All films show the polycrystalline anatase TiO2 structure. The loose sintering state and phase transformation during evaporating TiO2 anatase slice lead to the high surface defect density, roughness and extinction coefficient, and low LIDT of films. The TiO2 + Ta2O5 composite films have the lowest extinction coefficient and the highest LIDT among all samples investigated. Guidance of selecting materials for high LIDT laser mirrors is given.}

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiO2 single layers and TiO2/SiO2 high reflectors (HR) are prepared by electron beam evaporation at different TiO2 deposition rates. It is found that the changes of properties of TiO2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in. film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The well known 'crystal seed' theory is first applied in this work to prepare TiO2 film: a high refractive index rutile TiO2 film is grown by electron beam evaporation on the rutile seed formed by 1100 degrees C annealing. The average n is larger than 2.4, by far the highest in all the authors' TiO2 films. The films are characterised by optical properties, microstructure and surface morphologies. It is found that the refractive index shows positive relation with the crystal structure, grain size, and packing density and roughness of the film. The film has lower density of granularity and nodule defects on the surface than those of the film deposited by magnetron sputtering. The result shows attractive application in complex filter and laser coatings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fotocatalisadores baseados em nanopartículas de dióxido de titânio modificados fornecem soluções em potencial para a mineralização de poluentes orgânicos em meio aquoso. Agentes modificadores têm sido amplamente investigados com o objetivo de promover a fotoativação pela luz visível. Foram estudadas a nível fundamental até aqui, as modificações estruturais, texturais e óticas causadas pela introdução de silício e nitrogênio na rede da titânia. Titânias puras (TiO2) e modificadas nanoestruturadas, particularmente titânias modificadas com silício (TiO2-SiO2), com razões atômicas Si/Ti de 0,1, 0,2 e 0,3 foram sintetizadas pelo método sol-gel a partir da hidrólise ácida de isopropóxido de titânio(IV) e tetraetoxisilano. As metodolo-gias sintéticas desenvolvidas tentaram aderir aos princípios da Química Verde, dispensando o uso de atmosfera inerte e temperatura e pressão elevadas, o que foi alcançado utilizando-se, principalmente, a agitação ultrassônica. Titânias modificadas com silício e dopadas com ni-trogênio (TiO2-SiO2-N) foram obtidas a partir do pré-tratamento de TiO2-SiO2 a 500 C ao ar e então submetidas ao fluxo de amônia (NH3) a 600 C por 1-3 h e, após resfriamento, foram recozidas a 400 C ao ar. Amostras distintas foram caracterizadas, na forma de pó seco e após calcinação entre 400600 C, por difração de raios X, adsorção de nitrogênio, microscopia eletrônica de varredura e espectroscopia de refletância difusa no UV-Visível. As titânias pu-ras, obtidas principalmente variando-se a razão de hidrólise, foram cristalizadas na forma de anatásio como fase predominante até 600 C, além de traços de brookita presente até 500 C. O rutilo foi identificado a partir de 600 C como fase minoritária, embora apresentando tama-nhos de cristal significativamente maiores que os estimados para o cristal de anatásio. As titâ-nias modificadas com até 20% de silício apresentaram notável estabilidade térmica, evidenci-ada pela presença exclusiva de anatásio até 900 C. Foi também observado o aparecimento de macroporos com diâmetro médio em torno de 55 nm após calcinação a 400 C, diferentemente do que se observou nas amostras em geral. A introdução de baixo teor de silício assegurou às titânias calcinadas valores elevados de área específica, atribuído ao efeito de contenção acentuada na taxa de crescimento do cristal. As titânias modificadas com silício e as titânias puras obtidas com taxa de hidrólise 25:1 para a razão H2O : Ti apresentaram mesoporos com diâmetros médios de mesma dimensão do cristal. As titânias modificadas com silício e dopa-das com nitrogênio apresentaram absorção na região visível entre 400-480 nm, com discreta redução da energia de band gap para as transições eletrônicas consideradas. Titânias calcina-das a 300−400 C apresentaram desempenho fotocatalítico semelhante ao TiO2 P25 da De-gussa sob irradiação UV, na degradação do azo corante Reactive Yellow 145 em soluções a-quosas em pH 5 a 20 1C

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EUS] Gaur egun nanozientzia zientzia eta teknologia arlo guztietara zabaldu da, gizarte garapenean eragin handia izan du. Ikerkuntza arlo guztietara zabaldu da ezinezkoak ziruditen erronkak argitu eta ezezagunak ditugun ezagutzak garatzeko asmoz. Lan honetan TiO2 nanohagatxoen sintesia burutu da metodo hidrotermala erabiliz. Sintesi baldintzek lortutako produktuaren egituran eta forman duten eragina kontuan harturik, sintesia gertatzeko ezinbestekoak diren pHa, tenperatura eta denbora aztertu dira. Ondoren, tratamendu kimiko eta termiko ezberdinen bidez konposizio eta egitura ezberdinak lor daitezkeela frogatu da. Bereziki, surfaktante eta pHaren arabera egitura ezberdinak lortzen direla ikusirik. Sintetizatutako laginen karakterizazioa burutzeko X izpien difrakzioa, transmisio bidezko mikroskopia elektronikoa, infragorri espektroskopia, eta termograbimetria teknikak erabili dira. Hauen bidez NaTi3O6·(OH)x·(H2O)y , (TiO2)x(H2O)y , anatasa eta rutilo faseak identifikatu dira, eta nanohagatxoen lodiera eta morfologia ezberdinak ikusi dira.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanopartículas de dióxido de titânio vêm sendo extensamente empregadas como fotocatalisa-dores, já que são eficientes na degradação de diversos poluentes. Visando a obtenção de titâ-nias com diferentes propriedades, realizaram-se sínteses através do método sol-gel, a partir da hidrólise do tetraisopropóxido de titânio (IV) TIPP e seguindo-se os princípios da Química Verde, dispensando-se temperaturas e pressões elevadas. Foi estudada a influência de dife-rentes parâmetros, como: pH, solvente, razão molar álcool/TIPP e ordem de adição dos rea-gentes. Foram obtidas titânias na forma cristalina anatásio, nanométricas, com elevadas áreas superficiais específicas e predominantemente mesoporosas. Visando-se obter titânias com melhores propriedades óticas, isto é, capazes de sofrer a fotoativação pela luz visível, foram sintetizadas titânias dopadas e co-dopadas com os metais ferro e rutênio (Fe3+ e Ru3+) e o a-metal N (N3). A síntese desses materiais também foi realizada através do método sol-gel, sendo a dopagem realizada durante o processo de hidrólise. As amostras foram caracterizadas na forma de pó por difração de raios-X, adsorção-dessorção de nitrogênio, microscopia ele-trônica de varredura e espectroscopia de refletância difusa no UV-Visível. A titânia pura a-presentou como única fase cristalina o anatásio, quando calcinada até 400 C, com a presença de traços de brookita. A partir de 600 C, observou-se o aparecimento da fase rutilo, que em 900C foi a única fase encontrada na titânia. A dopagem com Ru3+dificultou a transformação de fase anatásio para rutilo, ao contrário da dopagem com Fe3+. O processo de co-dopagem acelerou a formação de rutilo, que se apresentou como única fase nas amostras calcinadas a 600 C. As titânias dopadas apresentaram uma leve diminuição na energia de bandgap, sendo os dopantes capazes de deslocar a absorção para o vermelho. Foram realizados testes fotoca-talíticos visando à degradação do azocorante Reactive Yellow 145 com lâmpada de vapor de mercúrio de 125 W a fim de se comparar as atividades fotocatalíticas das titânias puras, dopa-das e co-dopadas, calcinadas a 300C. De todas as titânias sintetizadas, a titânia pura foi a que melhor degradou o corante, tendo um desempenho semelhante ao do TiO2 P25, da Evo-nik

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that the Mott metal-insulator transition (MIT) in single crystalline VO(2) nanowires is strongly mediated by surface stress as a consequence of the high surface area to volume ratio of individual nanowires. Further, we show that the stress-induced antiferromagnetic Mott insulating phase is critical in controlling the spatial extent and distribution of the insulating monoclinic and metallic rutile phases as well as the electrical characteristics of the Mott transition. This affords an understanding of the relationship between the structural phase transition and the Mott MIT.