950 resultados para mathematical analysis
Resumo:
We consider a 1-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u equivalent to 1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this work we study, in the framework of Colombeau`s generalized functions, the Hamilton-Jacobi equation with a given initial condition. We have obtained theorems on existence of solutions and in some cases uniqueness. Our technique is adapted from the classical method of characteristics with a wide use of generalized functions. We were led also to obtain some general results on invertibility and also on ordinary differential equations of such generalized functions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
l Suppose that X, Y. A and B are Banach spaces such that X is isomorphic to Y E) A and Y is isomorphic to X circle plus B. Are X and Y necessarily isomorphic? In this generality. the answer is no, as proved by W.T. Cowers in 1996. In the present paper, we provide a very simple necessary and sufficient condition on the 10-tuples (k, l, m, n. p, q, r, s, u, v) in N with p+q+u >= 3, r+s+v >= 3, uv >= 1, (p,q)$(0,0), (r,s)not equal(0,0) and u=1 or v=1 or (p. q) = (1, 0) or (r, s) = (0, 1), which guarantees that X is isomorphic to Y whenever these Banach spaces satisfy X(u) similar to X(p)circle plus Y(q), Y(u) similar to X(r)circle plus Y(s), and A(k) circle plus B(l) similar to A(m) circle plus B(n). Namely, delta = +/- 1 or lozenge not equal 0, gcd(lozenge, delta (p + q - u)) divides p + q - u and gcd(lozenge, delta(r + s - v)) divides r + s - v, where 3 = k - I - in + n is the characteristic number of the 4-tuple (k, l, m, n) and lozenge = (p - u)(s - v) - rq is the discriminant of the 6-tuple (p, q, r, s, U, v). We conjecture that this result is in some sense a maximal extension of the classical Pelczynski`s decomposition method in Banach spaces: the case (1, 0. 1, 0, 2. 0, 0, 2. 1. 1). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Motivated by a characterization of the complemented subspaces in Banach spaces X isomorphic to their squares X-2, we introduce the concept of P-complemented subspaces in Banach spaces. In this way, the well-known Pelczynski`s decomposition method can be seen as a Schroeder-Bernstein type theorem. Then, we give a complete description of the Schroeder-Bernstein type theorems for this new notion of complementability. By contrast, some very elementary questions on P-complementability are refinements of the Square-Cube Problem closely connected with some Banach spaces introduced by W.T. Gowers and B. Maurey in 1997. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We first introduce the notion of (p, q, r)-complemented subspaces in Banach spaces, where p, q, r is an element of N. Then, given a couple of triples {(p, q, r), (s, t, u)} in N and putting Lambda = (q + r - p)(t + u - s) - ru, we prove partially the following conjecture: For every pair of Banach spaces X and Y such that X is (p, q, r)-complemented in Y and Y is (s, t, u)-complemented in X, we have that X is isomorphic Y if and only if one of the following conditions holds: (a) Lambda not equal 0, Lambda divides p - q and s - t, p = 1 or q = 1 or s = 1 or t = 1. (b) p = q = s = t = 1 and gcd(r, u) = 1. The case {(2, 1, 1), (2, 1,1)} is the well-known Pelczynski`s decomposition method. Our result leads naturally to some generalizations of the Schroeder-B em stein problem for Banach spaces solved by W.T. Gowers in 1996. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We solve the Bjorling problem for timelike surfaces in the Lorentz-Minkowski space through a split-complex representation formula obtained for this kind of surface. Our approach uses the split-complex numbers and natural split-holomorphic extensions. As applications, we show that the minimal timelike surfaces of revolution as well as minimal ruled timelike surfaces can be characterized as solutions of certain adequate Bjorling problems in the Lorentz-Minkowski space. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The intent of this paper is to present an analysis of optical holography. Both the physical theory behind holography and the experimental techniques used in making holograms will be presented. To accomplish this goal, the paper is divided into two independent sections: the theoretical section followed by the experimental section. Each section is intended to be a complete unit. The Theoretical Section is an exposure to the theory behind holography. This consists of a review of the concepts of interference and diffraction. followed by a brief review of partial coherence. The remaining part of the Theoretical Section is devoted to the mathematical analysis of optical holography. The Experimental Section begins with an introduction to the equipment and facilities currently available for optical holography at Colby College. Holographic procedures is dominated by the description of transmission holography (v.s. reflection. or white-light. holography). After these general holographic procedures a few variations on the basic transmission hologram are presented. The experimental section will end with an introduction to holographic interferometry, a major application of holographic techniques.
Resumo:
An underwater gas pipeline is the portion of the pipeline that crosses a river beneath its bottom. Underwater gas pipelines are subject to increasing dangers as time goes by. An accident at an underwater gas pipeline can lead to technological and environmental disaster on the scale of an entire region. Therefore, timely troubleshooting of all underwater gas pipelines in order to prevent any potential accidents will remain a pressing task for the industry. The most important aspect of resolving this challenge is the quality of the automated system in question. Now the industry doesn't have any automated system that fully meets the needs of the experts working in the field maintaining underwater gas pipelines. Principle Aim of this Research: This work aims to develop a new system of automated monitoring which would simplify the process of evaluating the technical condition and decision making on planning and preventive maintenance and repair work on the underwater gas pipeline. Objectives: Creation a shared model for a new, automated system via IDEF3; Development of a new database system which would store all information about underwater gas pipelines; Development a new application that works with database servers, and provides an explanation of the results obtained from the server; Calculation of the values MTBF for specified pipelines based on quantitative data obtained from tests of this system. Conclusion: The new, automated system PodvodGazExpert has been developed for timely and qualitative determination of the physical conditions of underwater gas pipeline; The basis of the mathematical analysis of this new, automated system uses principal component analysis method; The process of determining the physical condition of an underwater gas pipeline with this new, automated system increases the MTBF by a factor of 8.18 above the existing system used today in the industry.
Resumo:
The present study has as objective to explaining about the origins of the mathematical logic. This has its beginning attributed to the autodidactic English mathematician George Boole (1815-1864), especially because his books The Mathematical Analysis of Logic (1847) and An Investigation of the Laws of Thought (1854) are recognized as the inaugural works of the referred branch. However, surprisingly, in the same time another mathematician called Augutus of Morgan (1806-1871) it also published a book, entitled Formal Logic (1847), in defense of the mathematic logic. Even so, times later on this same century, another work named Elements of Logic (1875) it appeared evidencing the Aristotelian logic with Richard Whately (1787-1863), considered the better Aristotelian logical of that time. This way, our research, permeated by the history of the mathematics, it intends to study the logic produced by these submerged personages in the golden age of the mathematics (19th century) to we compare the valid systems in referred period and we clarify the origins of the mathematical logic. For that we looked for to delineate the panorama historical wrapper of this study. We described, shortly, biographical considerations about these three representatives of the logic of the 19th century formed an alliance with the exhibition of their point of view as for the logic to the light of the works mentioned above. In this sense, we aspirated to present considerations about what effective Aristotelian´s logic existed in the period of Boole and De Morgan comparing it with the new emerging logic (the mathematical logic). Besides of this, before the textual analysis of the works mentioned above, we still looked for to confront the systems of Boole and De Morgan for we arrive to the reason because the Boole´s system was considered better and more efficient. Separate of this preponderance we longed to study the flaws verified in the logical system of Boole front to their contemporaries' production, verifying, for example, if they repeated or not. We concluded that the origins of the mathematical logic is in the works of logic of George Boole, because, in them, has the presentation of a new logic, matematizada for the laws of the thought similar to the one of the arithmetic, while De Morgan, in your work, expand the Aristotelian logic, but it was still arrested to her
Resumo:
The aim of the present study is to reevaluate the logical thought of the English mathematician George Boole (1815 - 1864). Thus, our research centers on the mathematical analysis of logic in the context of the history of mathematics. In order to do so, we present various biographical considerations about Boole in the light of events that happened in the 19th century and their consequences for mathematical production. We briefly describe Boole's innovations in the areas of differential equations and invariant theory and undertake an analysis of Boole's logic, especially as formulated in the book The Mathematical Analysis of Logic, comparing it not only with the traditional Aristotelian logic, but also with modern symbolic logic. We conclude that Boole, as he intended, expanded logic both in terms of its content and also in terms of its methods and formal elaboration. We further conclude that his purpose was the mathematical modeling of deductive reasoning, which led him to present an innovative formalism for logic and, because the different ways it can be interpreted, a new conception of mathematics
Resumo:
This work presents an analysis of the control law based on an indirect hybrid scheme using neural network, initially proposed for O. Adetona, S. Sathanathan and L. H. Keel. Implementations of this control law, for a level plant of second order, was resulted an oscillatory behavior, even if the neural identifier has converged. Such results had motivated the investigation of the applicability of that law. Starting from that, had been made stability mathematical analysis and several implementations, with simulated plants and with real plants, for analyze the problem. The analysis has been showed the law was designed being despised some components of dynamic of the plant to be controlled. Thus, for plants that these components have a significant influence in its dynamic, the law tends to fail
Stochastic stability for Markovian jump linear systems associated with a finite number of jump times
Resumo:
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic tau-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic tau-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We study Hardy spaces on the boundary of a smooth open subset or R-n and prove that they can be defined either through the intrinsic maximal function or through Poisson integrals, yielding identical spaces. This extends to any smooth open subset of R-n results already known for the unit ball. As an application, a characterization of the weak boundary values of functions that belong to holomorphic Hardy spaces is given, which implies an F. and M. Riesz type theorem. (C) 2004 Elsevier B.V. All rights reserved.