The C(K, X) spaces for compact metric spaces K and X with a uniformly convex maximal factor
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved. |
Identificador |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.384, n.2, p.357-365, 2011 0022-247X http://producao.usp.br/handle/BDPI/30579 10.1016/j.jmaa.2011.05.068 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Isomorphic classification of C(K, X) spaces #Bessaga-Pelczynski`s and Milutin`s theorems on separable C(K) spaces #BANACH-SPACES #OPERATORS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |