The C(K, X) spaces for compact metric spaces K and X with a uniformly convex maximal factor


Autoria(s): GALEGO, Eloi Medina
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.

Identificador

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.384, n.2, p.357-365, 2011

0022-247X

http://producao.usp.br/handle/BDPI/30579

10.1016/j.jmaa.2011.05.068

http://dx.doi.org/10.1016/j.jmaa.2011.05.068

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Mathematical Analysis and Applications

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Isomorphic classification of C(K, X) spaces #Bessaga-Pelczynski`s and Milutin`s theorems on separable C(K) spaces #BANACH-SPACES #OPERATORS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion