916 resultados para continuous-resource model
Resumo:
Easing of economic sanctions by Western countries in 2012 augmented the prospect that Myanmar will expand its exports. On the other hand, a sharp rise in natural resource exports during the sanctions brings in a concern about the "Dutch disease". This study projects Myanmar's export potential by calculating counterfactual export values with an augmented gravity model that takes into account the effects of natural resource exports on non-resource exports. Without taking into account the effects of natural resource exports, the counterfactual predicted values of non-resource exports during 2004–2011 are more than five times larger than the actual exports. If we take into account the effects, however, the predicted values are smaller than the actual exports. The empirical results imply that the "Dutch disease" is at stake in Myanmar than any other Southeast Asian countries.
Resumo:
Growing scarcity, increasing demand and bad management of water resources are causing weighty competition for water and consequently managers are facing more and more pressure in an attempt to satisfy users? requirement. In many regions agriculture is one of the most important users at river basin scale since it concentrates high volumes of water consumption during relatively short periods (irrigation season), with a significant economic, social and environmental impact. The interdisciplinary characteristics of related water resources problems require, as established in the Water Framework Directive 2000/60/EC, an integrated and participative approach to water management and assigns an essential role to economic analysis as a decision support tool. For this reason, a methodology is developed to analyse the economic and environmental implications of water resource management under different scenarios, with a focus on the agricultural sector. This research integrates both economic and hydrologic components in modelling, defining scenarios of water resource management with the goal of preventing critical situations, such as droughts. The model follows the Positive Mathematical Programming (PMP) approach, an innovative methodology successfully used for agricultural policy analysis in the last decade and also applied in several analyses regarding water use in agriculture. This approach has, among others, the very important capability of perfectly calibrating the baseline scenario using a very limited database. However one important disadvantage is its limited capacity to simulate activities non-observed during the reference period but which could be adopted if the scenario changed. To overcome this problem the classical methodology is extended in order to simulate a more realistic farmers? response to new agricultural policies or modified water availability. In this way an economic model has been developed to reproduce the farmers? behaviour within two irrigation districts in the Tiber High Valley. This economic model is then integrated with SIMBAT, an hydrologic model developed for the Tiber basin which allows to simulate the balance between the water volumes available at the Montedoglio dam and the water volumes required by the various irrigation users.
Resumo:
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.
Resumo:
The structure of the atmospheric boundary layer (ABL) is modelled with the limited- length-scale k-ε model of Apsley and Castro. Contrary to the standard k-ε model, the limited-length-scale k-ε model imposes a maximum mixing length which is derived from the boundary layer height, for neutral and unstable atmospheric situations, or by Monin-Obukhov length when the atmosphere is stably stratified. The model is first verified reproducing the famous Leipzig wind profile. Then the performance of the model is tested with measurements from FINO-1 platform using sonic anemometers to derive the appropriate maximum mixing length.
Resumo:
With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.
Resumo:
The BioKnowledge Library is a relational database and web site (http://www.proteome.com) composed of protein-specific information collected from the scientific literature. Each Protein Report on the web site summarizes and displays published information about a single protein, including its biochemical function, role in the cell and in the whole organism, localization, mutant phenotype and genetic interactions, regulation, domains and motifs, interactions with other proteins and other relevant data. This report describes four species-specific volumes of the BioKnowledge Library, concerned with the model organisms Saccharomyces cerevisiae (YPD), Schizosaccharomyces pombe (PombePD) and Caenorhabditis elegans (WormPD), and with the fungal pathogen Candida albicans (CalPD™). Protein Reports of each species are unified in format, easily searchable and extensively cross-referenced between species. The relevance of these comprehensively curated resources to analysis of proteins in other species is discussed, and is illustrated by a survey of model organism proteins that have similarity to human proteins involved in disease.
Resumo:
Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end of the year 2000. The sequencing effort has been coordinated by an international collaboration, the Arabidopsis Genome Initiative (AGI). The rationale for intensive investigation of Arabidopsis is that it is an excellent model for higher plants. In order to maximize use of the knowledge gained about this plant, there is a need for a comprehensive database and information retrieval and analysis system that will provide user-friendly access to Arabidopsis information. This paper describes the initial steps we have taken toward realizing these goals in a project called The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org).
Resumo:
A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space HH . More precisely, given a quasinilpotent operator T on HH , there exists a compact quasinilpotent operator K in HH such that T is similar to a part of K⊕K⊕⋯⊕K⊕⋯K⊕K⊕⋯⊕K⊕⋯ acting on the direct sum of countably many copies of HH . We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of C0C0 -semigroups of quasinilpotent operators.
Resumo:
Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.
Resumo:
Federal Railway Administration, Office of Safety, Washington, D.C.
Resumo:
Includes bibliographical references.
Resumo:
"OAEP-10."