A continuous model for quasinilpotent operators.
Data(s) |
11/05/2016
|
---|---|
Resumo |
A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space HH . More precisely, given a quasinilpotent operator T on HH , there exists a compact quasinilpotent operator K in HH such that T is similar to a part of K⊕K⊕⋯⊕K⊕⋯K⊕K⊕⋯⊕K⊕⋯ acting on the direct sum of countably many copies of HH . We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of C0C0 -semigroups of quasinilpotent operators. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
en |
Publicador |
Springer |
Relação |
http://eprints.ucm.es/38211/ http://link.springer.com/article/10.1007/s00209-016-1673-2 http://dx.doi.org/ 10.1007/s00209-016-1673-2 MTM2013-42105-P |
Direitos |
cc_by info:eu-repo/semantics/openAccess |
Palavras-Chave | #Análisis funcional y teoría de operadores |
Tipo |
info:eu-repo/semantics/article PeerReviewed |