A continuous model for quasinilpotent operators.


Autoria(s): Gallardo Gutiérrez, Eva A.; Partington, Jonathan R.; Rodriguez, Daniel J.
Data(s)

11/05/2016

Resumo

A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space HH . More precisely, given a quasinilpotent operator T on HH , there exists a compact quasinilpotent operator K in HH such that T is similar to a part of K⊕K⊕⋯⊕K⊕⋯K⊕K⊕⋯⊕K⊕⋯ acting on the direct sum of countably many copies of HH . We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of C0C0 -semigroups of quasinilpotent operators.

Formato

application/pdf

Identificador

http://eprints.ucm.es/38211/1/Gallardo26.pdf

Idioma(s)

en

Publicador

Springer

Relação

http://eprints.ucm.es/38211/

http://link.springer.com/article/10.1007/s00209-016-1673-2

http://dx.doi.org/ 10.1007/s00209-016-1673-2

MTM2013-42105-P

Direitos

cc_by

info:eu-repo/semantics/openAccess

Palavras-Chave #Análisis funcional y teoría de operadores
Tipo

info:eu-repo/semantics/article

PeerReviewed