996 resultados para Statistical maps.
Resumo:
This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.
Resumo:
Many traffic situations require drivers to cross or merge into a stream having higher priority. Gap acceptance theory enables us to model such processes to analyse traffic operation. This discussion demonstrated that numerical search fine tuned by statistical analysis can be used to determine the most likely critical gap for a sample of drivers, based on their largest rejected gap and accepted gap. This method shares some common features with the Maximum Likelihood Estimation technique (Troutbeck 1992) but lends itself well to contemporary analysis tools such as spreadsheet and is particularly analytically transparent. This method is considered not to bias estimation of critical gap due to very small rejected gaps or very large rejected gaps. However, it requires a sufficiently large sample that there is reasonable representation of largest rejected gap/accepted gap pairs within a fairly narrow highest likelihood search band.
Resumo:
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov. We tackle in this paper the problem of adaptivity to this condition in the context of model selection, in a general learning framework. Actually, we consider a weaker version of this condition that allows one to take into account that learning within a small model can be much easier than within a large one. Requiring this “strong margin adaptivity” makes the model selection problem more challenging. We first prove, in a general framework, that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our second main result is that strong margin adaptivity is not always possible when the models are not nested: for every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate strong margin adaptivity.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
It is important to promote a sustainable development approach to ensure that economic, environmental and social developments are maintained in balance. Sustainable development and its implications are not just a global concern, it also affects Australia. In particular, rural Australian communities are facing various economic, environmental and social challenges. Thus, the need for sustainable development in rural regions is becoming increasingly important. To promote sustainable development, proper frameworks along with the associated tools optimised for the specific regions, need to be developed. This will ensure that the decisions made for sustainable development are evidence based, instead of subjective opinions. To address these issues, Queensland University of Technology (QUT), through an Australian Research Council (ARC) linkage grant, has initiated research into the development of a Rural Statistical Sustainability Framework (RSSF) to aid sustainable decision making in rural Queensland. This particular branch of the research developed a decision support tool that will become the integrating component of the RSSF. This tool is developed on the web-based platform to allow easy dissemination, quick maintenance and to minimise compatibility issues. The tool is developed based on MapGuide Open Source and it follows the three-tier architecture: Client tier, Web tier and the Server tier. The developed tool is interactive and behaves similar to a familiar desktop-based application. It has the capability to handle and display vector-based spatial data and can give further visual outputs using charts and tables. The data used in this tool is obtained from the QUT research team. Overall the tool implements four tasks to help in the decision-making process. These are the Locality Classification, Trend Display, Impact Assessment and Data Entry and Update. The developed tool utilises open source and freely available software and accounts for easy extensibility and long-term sustainability.
Resumo:
Agents make up an important part of game worlds, ranging from the characters and monsters that live in the world to the armies that the player controls. Despite their importance, agents in current games rarely display an awareness of their environment or react appropriately, which severely detracts from the believability of the game. Some games have included agents with a basic awareness of other agents, but they are still unaware of important game events or environmental conditions. This paper presents an agent design we have developed, which combines cellular automata for environmental modeling with influence maps for agent decision-making. The agents were implemented into a 3D game environment we have developed, the EmerGEnT system, and tuned through three experiments. The result is simple, flexible game agents that are able to respond to natural phenomena (e.g. rain or fire), while pursuing a goal.
Resumo:
Conventional planning and decision making, with its sectoral and territorial emphasis and flat-map based processes are no longer adequate or appropriate for the increased complexity confronting airport/city interfaces. These crowed and often contested governance spaces demand a more iterative and relational planning and decision-making approach. Emergent GIS based planning and decision-making tools provide a mechanism which integrate and visually display an array of complex data, frameworks and scenarios/expectations, often in ‘real time’ computations. In so doing, these mechanisms provide a common ground for decision making and facilitate a more ‘joined-up’ approach to airport/city planning. This paper analyses the contribution of the Airport Metropolis Planning Support System (PSS) to sub-regional planning in the Brisbane Airport case environment.
Resumo:
Player experience of spatiality in first-person, single-player games is informed by the maps and navigational aids provided by the game. This project uses textual analysis to examine the way these maps and navigational aids inform the experience of spatiality in Fallout 3, BioShock and BioShock 2. Spatiality is understood as trialectic, incorporating perceived, conceived and lived space, drawing on the work of Henri Lefebvre and Edward Soja. The most prominent elements of the games’ maps and navigational aids are analysed in terms of how they inform players’ experience of the games’ spaces. In particular this project examines the in-game maps these games incorporate, the waypoint navigation and fast-travel systems in Fallout 3, and the guide arrow and environmental cues in the BioShock games.
Resumo:
The research objectives of this thesis were to contribute to Bayesian statistical methodology by contributing to risk assessment statistical methodology, and to spatial and spatio-temporal methodology, by modelling error structures using complex hierarchical models. Specifically, I hoped to consider two applied areas, and use these applications as a springboard for developing new statistical methods as well as undertaking analyses which might give answers to particular applied questions. Thus, this thesis considers a series of models, firstly in the context of risk assessments for recycled water, and secondly in the context of water usage by crops. The research objective was to model error structures using hierarchical models in two problems, namely risk assessment analyses for wastewater, and secondly, in a four dimensional dataset, assessing differences between cropping systems over time and over three spatial dimensions. The aim was to use the simplicity and insight afforded by Bayesian networks to develop appropriate models for risk scenarios, and again to use Bayesian hierarchical models to explore the necessarily complex modelling of four dimensional agricultural data. The specific objectives of the research were to develop a method for the calculation of credible intervals for the point estimates of Bayesian networks; to develop a model structure to incorporate all the experimental uncertainty associated with various constants thereby allowing the calculation of more credible credible intervals for a risk assessment; to model a single day’s data from the agricultural dataset which satisfactorily captured the complexities of the data; to build a model for several days’ data, in order to consider how the full data might be modelled; and finally to build a model for the full four dimensional dataset and to consider the timevarying nature of the contrast of interest, having satisfactorily accounted for possible spatial and temporal autocorrelations. This work forms five papers, two of which have been published, with two submitted, and the final paper still in draft. The first two objectives were met by recasting the risk assessments as directed, acyclic graphs (DAGs). In the first case, we elicited uncertainty for the conditional probabilities needed by the Bayesian net, incorporated these into a corresponding DAG, and used Markov chain Monte Carlo (MCMC) to find credible intervals, for all the scenarios and outcomes of interest. In the second case, we incorporated the experimental data underlying the risk assessment constants into the DAG, and also treated some of that data as needing to be modelled as an ‘errors-invariables’ problem [Fuller, 1987]. This illustrated a simple method for the incorporation of experimental error into risk assessments. In considering one day of the three-dimensional agricultural data, it became clear that geostatistical models or conditional autoregressive (CAR) models over the three dimensions were not the best way to approach the data. Instead CAR models are used with neighbours only in the same depth layer. This gave flexibility to the model, allowing both the spatially structured and non-structured variances to differ at all depths. We call this model the CAR layered model. Given the experimental design, the fixed part of the model could have been modelled as a set of means by treatment and by depth, but doing so allows little insight into how the treatment effects vary with depth. Hence, a number of essentially non-parametric approaches were taken to see the effects of depth on treatment, with the model of choice incorporating an errors-in-variables approach for depth in addition to a non-parametric smooth. The statistical contribution here was the introduction of the CAR layered model, the applied contribution the analysis of moisture over depth and estimation of the contrast of interest together with its credible intervals. These models were fitted using WinBUGS [Lunn et al., 2000]. The work in the fifth paper deals with the fact that with large datasets, the use of WinBUGS becomes more problematic because of its highly correlated term by term updating. In this work, we introduce a Gibbs sampler with block updating for the CAR layered model. The Gibbs sampler was implemented by Chris Strickland using pyMCMC [Strickland, 2010]. This framework is then used to consider five days data, and we show that moisture in the soil for all the various treatments reaches levels particular to each treatment at a depth of 200 cm and thereafter stays constant, albeit with increasing variances with depth. In an analysis across three spatial dimensions and across time, there are many interactions of time and the spatial dimensions to be considered. Hence, we chose to use a daily model and to repeat the analysis at all time points, effectively creating an interaction model of time by the daily model. Such an approach allows great flexibility. However, this approach does not allow insight into the way in which the parameter of interest varies over time. Hence, a two-stage approach was also used, with estimates from the first-stage being analysed as a set of time series. We see this spatio-temporal interaction model as being a useful approach to data measured across three spatial dimensions and time, since it does not assume additivity of the random spatial or temporal effects.
Resumo:
This paper presents a general, global approach to the problem of robot exploration, utilizing a topological data structure to guide an underlying Simultaneous Localization and Mapping (SLAM) process. A Gap Navigation Tree (GNT) is used to motivate global target selection and occluded regions of the environment (called “gaps”) are tracked probabilistically. The process of map construction and the motion of the vehicle alters both the shape and location of these regions. The use of online mapping is shown to reduce the difficulties in implementing the GNT.