969 resultados para SCHOTTKY-BARRIER


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures, 200 nm silver films as the contact metal were deposited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts between Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150A degrees C and 200A degrees C. Ohmic contacts were formed while the growth temperatures were lower than 150A degrees C or higher than 200A degrees C. After analysis, the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new ultraviolet photodetector of employing p menus type GaN (p(-)-GaN) as the active layer is proposed. It is easy to obtain the p(-)-GaN layer with low carrier concentration. As a result, the depletion region can be increased and the quantum efficiency can be improved. The influence of some structure parameters on the performance of the new device is investigated. Through the simulation calculation, it is found that the quantum efficiency increases with the decrease of the barrier height between the metal electrode and the p(-)-GaN layer, and it is also found that the quantum efficiency can be improved by reducing the thickness of the p(-)-GaN layer. To fabricate the new photodetector with high performance, we should employ thin p(-)-GaN layer as the active layer and reduce the Schottky barrier height.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zn1-xMgxS-based Schottky barrier ultraviolet (UV) photodetectors were fabricated using the molecular-beam-epitaxy (MBE) technique. The influence of Mg content on MBE-grown Zn1-xMgxS-based UV photodetectors has been investigated in details with a variety of experimental techniques, including photoresponse (PR), capacitance-voltage, deep level transient Fourier spectroscopy (DLTFS) and photoluminescence (PL). The room-temperature PR results show that the abrupt long-wavelength cutoffs covering 325, 305 295. and 270 nm with Mg contents of 16%, 44%, 57%, and 75% in the Zn1-xMgxS active layers, respectively, were achieved. But the responsivity and the external quantum efficiency exhibited a slight decrease with the Mg content increasing. In good agreement with the PR results, both of the integrated intensity of the PL spectra obtained from Zn1-xMgxS thin films with different Mg compositions (x = 31% and 52%, respectively) and the DLTFS spectra obtained from Zn1-xMgxS-based (x = 5% and 45%, respectively) UV photodetector samples clearly revealed a significant concentration increase of the non-radiative deep traps with increasing Mg containing in the ZnMgS active layers. Our experimental results also indicate that the MBE-grown ZnMgS-based photodetectors can offer the promising characteristics for the detection of short-wavelength UV radiation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adsorption of K on the n-GaAs(I 0 0) surface was investigated by X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoemission spectroscopy (SR-PES). The Ga3d and As3d core level was measured for clean and K adsorbed GaAs(I 0 0) surface. The adsorption of K induced chemical reaction between K and As, and the K-As reactant formed when the K coverage theta > I ML. The chemical reaction between K and Ga did not occur, but Ga atoms were exchanged by K atoms. From the data of band bending, the Schottky barrier is 0.70 eV. The Fermi-level pinning was not caused by defect levels. The probable reason is that the dangling bonds of surface Ga atoms were filled by the outer-shell electrons of K atoms, forming a half-filled surface state. The Fermi-level pinning was caused by this half-filled surface state. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon carbide (SiC) is recently receiving increased attention due to its unique electrical and thermal properties. It has been regarded as the most appropriate semiconductor material for high power, high frequency, high temperature, and radiation hard microelectronic devices. The fabrication processes and characterization of basic device on 6H-SiC were systematically studied. The main works are summarized as follows:The homoepitaxial growth on the commercially available single-crystal 6H-SiC wafers was performed in a modified gas source molecular beam epitaxy system. The mesa structured p(+)n junction diodes on the material were fabricated and characterized. The diodes showed a high breakdown voltage of 800 V at room temperature. They operated with good rectification characteristics from room temperature to 673 K.Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes were fabricated. They showed good rectification characteristics from room temperature to 473 K. Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800 V.n-Type 6H-SiC MOS capacitors were fabricated and characterized. Under the same growing conditions, the quality of polysilicon gate capacitors was better than Al. In addition, SiC MOS capacitors had good tolerance to gamma rays. (C) 2002 Published by Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get high quality 4H-SiC epilayers. Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates purchased from Cree is performed at a typical temperature of 1500 degrees C with a pressure of 40 Torr by using SiH4+C2H4+H-2 gas system. The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope, atomic force microscopy (AFM), x-ray diffraction, Raman scattering, and low temperature photoluminescence (LTPL). The background doping of 32 pm-thick sample has been reduced to 2-5 x 10(15) cm(-3). The FWHM of the rocking curve is 9-16 arcsec. Intentional N-doped and B-doped 4H-SiC epilayers are obtained by in-situ doping of NH3 and B2H6, respectively. Schottky barrier diodes with reverse blocking voltage of over 1000 V are achieved preliminarily.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal stability of CoSi2 thin films on GaAs substrates has been studied using a variety of techniques. The CoSi2 thin films were formed by depositing Co(500 angstrom) and Si(1800 angstrom) layers on GaAs substrates by electron-beam evaporation followed by annealing processes, where the Si inter-layer was used as a diffusion/reaction barrier at the interface. The resistivity of CoSi2 thin films formed is about 30 muOMEGA cm. The Schottky barrier height of CoSi2/n-GaAs is 0.76 eV and the ideality factor is 1.14 after annealing at 750-degrees-C for 30 min. The CoSi2/GaAs interface is determined to be thermally stable and the thin film morphologically uniform on GaAs after 900-degrees-C/30 s anneal. The CoSi2 thin films fulfill the requirements in GaAs self-aligned gate technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical measurements were combined with surface techniques to study the Pt/Si interfaces at various silicide formation temperatures. Effects of deep centers on the Schottky barrier heights were studied. Hydrogen plasma treatment was used to passivate the impurity/defect centers at the interfaces, and the effects of hydrogenation on the Schottky barrier heights were also examined. Combining our previous study on the Pt/Si interfacial reaction, factors influencing the PtSi/Si Schottky barrier diode are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microscopic characteristics of the GaAs(100) surface treated with P2S5/NH4OH solution has been investigated by using Auger-electron spectroscopy (AES) and x-ray photoemission spectroscopy (XPS). AES reveals that only phosphorus and sulfur, but not oxygen, are contained in the interface between passivation film and GaAs substrate. Using XPS it is found that both Ga2O3 and As2O3 are removed from the GaAs surface by the P2S5/NH4OH treatment; instead, gallium sulfide and arsenic sulfide are formed. The passivation film results in a reduction of the density of states of the surface electrons and an improvement of the electronic and optical properties of the GaAs surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Homoepitaxial growth of4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates was performed at 1500℃ by using the step controlled Epitaxy. Ti/4H-SiC Schottky barrier diodes (SBDs) with blocking voltage over lkV have been made on an undoped epilayer with 32μm in thick and 2-5 × 10^15 cm^-3 in carrier density. The diode rectification ratio of forward to reverse (defined at ± 1V) is over 107 at room temperature and over 10^2 at 538K. Their electrical characteristics were studied by the current-voltage measurements in the temperature range from 20 to 265 ℃. The ideality factor and Schottky barrier height obtained at room temperature are 1.33 and 0. 905eV, respectively. The SBDs have on-state current density of 150A/cm^2 at a forward voltage drop of about 2.0V. The specific on-resistance for the rectifier is found to be as 7.9mΩ · cm^2 and its variation with temperature is T^2.0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon carbide (SiC) is recently receiving increased attention due to its unique electrical and thermal properties. It has been regarded as the most appropriate semiconductor material for high power, high frequency, high temperature, and radiation hard microelectronic devices. The fabrication processes and characterization of basic device on 6H-SiC were systematically studied. The main works are summarized as follows:The homoepitaxial growth on the commercially available single-crystal 6H-SiC wafers was performed in a modified gas source molecular beam epitaxy system. The mesa structured p(+)n junction diodes on the material were fabricated and characterized. The diodes showed a high breakdown voltage of 800 V at room temperature. They operated with good rectification characteristics from room temperature to 673 K.Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes were fabricated. They showed good rectification characteristics from room temperature to 473 K. Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800 V.n-Type 6H-SiC MOS capacitors were fabricated and characterized. Under the same growing conditions, the quality of polysilicon gate capacitors was better than Al. In addition, SiC MOS capacitors had good tolerance to gamma rays. (C) 2002 Published by Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel diode test structures have been manufactured to characterize long-range dopant diffusion in tungsten silicide layers. A tungsten silicide to p-type silicon contact has been characterized as a Schottky barrier rectifying contact with a silicide work function of 4.8 eV. Long-range diffusion of boron for an anneal at 900 °C for 30 min has been shown to alter this contact to become ohmic. Long-range diffusion of phosphorus with a similar anneal alters the contact to become a bipolar n-p diode. Bipolar diode action is demonstrated experimentally for anneal schedules of 30 min at 900 °C, indicating long-range diffusion of phosphorus (~38 µm), SIMS analysis shows dopant redistribution is adversely affected by segregation to the silicide/oxide interface. The concept of conduit diffusion has been demonstrated experimentally for application in advanced bipolar transistor technology. © 2009 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that surface plasmons (SPs) are supported on thin PtSi films. Using a prism-air gap-sample configuration, p-polarised infra-red light (3.39-mu-m) has been coupled with approximately 95% efficiency to SPs on the silicide electrode of PtSi-Si Schottky barrier structures. Stimulating SPs offers both a means of optically characterising silicide films and of enhancing optical absorption with a view to significantly increasing the Schottky barrier photoresponse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conducting atomic force microscopy images of bulk semiconducting BaTiO3 surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current- voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than that from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis deals with preparing stoichiometric crystalline thin films of InSe and In2Se3 by elemental evapouration and their property investigation.In the present study three temperature( or Elemental evapouration) method is utilized for the deposition of crystalline thin films . The deposition mechanism using three temperature method deals’ with condensation of solids on heated surfaces when the critical supersaturation of the vapour phase exceeds a certain limit. The critical values of the incident flux are related to substrate temperature and the interfacial energies of the involved vapours. At a favorable presence of component atoms in the vapour phase these can react and condense onto a substrate even at a elevated temperature. In the studies conducted the most significant factor is the formation of single compositional film namely indium mono selenide in the In –se system of compounds .Further this work shows the feasibility of thin film photovoltaic junctions of the schottky barrier type