126 resultados para Polinômios de Szegö
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Employing the method of least squares and quadratic B-spline polynomials, different statistical models were tested to identify the most appropriate to model the mean trajectories of live weight and carcass yield of Nile tilapia (Oreochromis niloticus). Data of live weight (8,758) and carcass yield (2,042) of tilapias with ages between 106 and 245 days were obtained from 72 families derived from 36 males and 72 females. The sex and tank variables were considered as classificatory and the coefficients of quadratic polynomials B-spline of two to five intervals of the same size were used as covariables. According to most fit criteria used, the models with quadratic B-spline polynomial with five intervals of the same size presented the best adjustments. The increase in number of intervals of B-spline polynomial improved the fit of the polynomials to the data. The inclusion of classificatory effects from sex, tank, the interaction of these effects and the quadratic polynomial B-spline nested in this interaction indicated that, over time, each sex, grown in different tank, presented different mean trajectory, necessitating the inclusion of nesting time in the interaction sex x tank in order to avoid the under or overestimation of breeding values of the selection candidates in breeding programs of this species.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
A time-and-motion study in wood processing of the Eucalyptus harvester's operational cycle was developed. The objective was to evaluate wood harvesters working under several site conditions. The research includes two kinds of harvesters while processing wood to supply paper and cellulose factories, as follows: a machine with twin tires and other one with large tracks, both connected to a different head harvester models. The forestry species were Eucalyptus saligna Smith and Eucalyptus grandis Hill ex Maiden, seven and eight years old, in slope terrains ranging from 0% to 10% degrees, under harvesting systems used by Votorantim and Suzano forestry companies, in São Paulo State, Brazi. Considering all field research, results disclosed that, for some conditions, both machines have shown mathematical correlation between some mechanical wood operation within the processing operational cycle and the saw logs production. All the mathematical correlations were found to express logarithmical models.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.