970 resultados para Offset printing
Resumo:
The transfer printing of 2 μm-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150 nm (±14 nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 × 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486 nm with a forward-directed optical output power up to 80 μW (355 mW/cm 2) when operated at a current density of 20 A/cm2. © 2013 AIP Publishing LLC.
Resumo:
Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.
Resumo:
We report the fabrication of a mechanically-flexible 16×16 array of thin-film, micron-size LEDs emitting at 480 nm. Devices were transfer-printed onto a mechanically-flexible ITO backplane using a modified, high-precision (placement accuracy ±25 nm) assembly system. © 2013 IEEE.
Resumo:
A binary grating on a Spatial Light Modulator generates twin antiphase spots with adjustable positions across the core of a multimode fibre allowing adaptive excitation of antisymmetric mode-groups for improving modal dispersion or modal multiplexing. © 2011 AOS.
Resumo:
The current study extends our earlier investigation on the real-time dynamics of print gap airflow around a single jetted drop over a moving substrate. In the present work, simulated web press printing was performed using a stationary grey-scale commercial inkjet print head to print full-width block of solid colour images onto a paper substrate with extended print gaps. The resultant printed images exhibit patterns or 'wood-graining' effects which become more prevalent as the relevant Reynolds number (Re) increases. The high-resolution scans of the printed images revealed that the patterns are created by oscillation and coalescence of neighboring printed tracks across the web. The phenomenon could be a result of drop stream perturbations caused by unsteady print gap airflow of the type similar to that observed in the previous study. ©2013; Society for Imaging Science and Technology.
Resumo:
Purpose: The purpose of this paper is to investigate how supply and demand interact during industrial emergence. Design/methodology/approach: The paper builds on previous theorising about co-evolutionary dynamics, exploring the interaction between supply and demand in a study of the industrial emergence of the commercial inkjet cluster in Cambridge, UK. Data are collected through 13 interviews with professionals working in the industry. Findings: The paper shows that as new industries emerge, asynchronies between technology supply and market demand create opportunities for entrepreneurial activity. In attempting to match innovative technologies to particular applications, entrepreneurs adapt to the system conditions and shape the environment to their own advantage. Firms that successfully operate in emerging industries demonstrate the functionality of new technologies, reducing uncertainty and increasing customer receptiveness. Research limitations/implications: The research is geographically bounded to the Cambridge commercial inkjet cluster. Further studies could consider commercial inkjet from a global perspective or test the applicability of the findings in other industries. Practical implications: Technology-based firms are often innovating during periods of industrial emergence. The insights developed in this paper help such firms recognise the emerging context in which they operate and the challenges that need to overcome. Originality/value: As an in depth study of a single industry, this research responds to calls for studies into industrial emergence, providing insights into how supply and demand interact during this phase of the industry lifecycle. © Emerald Group Publishing Limited.
Resumo:
The valence band offset (VBO) of MgO (111)/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 3.65 +/- 0.23 eV and the conduction band offset is deduced to be 0.92 +/- 0.23 eV, indicating that the heterojunction has a type- I band alignment. The accurate determination of the valence and conduction band offsets is important for the applications of MgO/SiC optoelectronic devices. (C) 2008 American Institute of Physics.
Resumo:
The valence band offset (VBO) of the wurtzite ZnO/4H-SiC heterojunction is directly determined to be 1.61 +/- 0.23 eV by x-ray photoelectron spectroscopy. The conduction band offset is deduced to be 1.50 +/- 0.23 eV from the known VBO value, which indicates a type-II band alignment for this heterojunction. The experimental VBO value is confirmed and in good agreement with the calculated value based on the transitive property of heterojunctions between ZnO, SiC, and GaN. (C) 2008 American Institute of Physics.
Resumo:
MgO may be a promising gate dielectric and surface passivation film for InN based devices and the valence band offset of MgO/InN heterojunction has been measured by x-ray photoelectron spectroscopy. The valence band offset is determined to be 1.59 +/- 0.23 eV. Given the experimental band gap of 7.83 for the MgO, a type-I heterojunction with a conduction band offset of 5.54 +/- 0.23 eV is found. The accurate determination of the valence and conduction band offsets is important for use of MgO/InN electronic devices. (c) 2008 American Institute of Physics.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset at the ZnO/GaAs heterojunction interface. The valence band offset is determined to be 2.39 +/- 0.23 eV. As a consequence, a type-II heterojunction with a conduction band offset of -0.44 +/- 0.23 eV is found. The directly obtained value is in good agreement with the result of theoretical calculations based on the interface-induced gap states and the chemical electronegativity theory. (c) 2008 American Institute of Physics.
Resumo:
In2O3 is a promising partner of InN to form InN/In2O3 heterosystems. The valence band offset (VBO) of wurtzite InN/cubic In2O3 heterojunction is determined by x-ray photoemission spectroscopy. The valence band of In2O3 is found to be 1.47 +/- 0.11 eV below that of InN, and a type-I heterojunction with a conduction band offset (CBO) of 0.49-0.99 eV is found. The accurate determination of the VBO and CBO is important for use of InN/In2O3 based electronic devices.