139 resultados para Micromechanics


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic computational fluid dynamics (CFD) approach has been applied to design the geometry of the channels of a three-dimensional (thick-walled) screen comprising upstream and downstream sets of elongated channels positioned at an angle of 90 degrees with respect to each other. Such a geometry of the thick-wall screen can effectively drop the ratio of the maximum flow velocity to mean flow velocity below 1.005 in a downstream microstructured reactor at low Reynolds numbers. In this approach the problem of flow equalization reduces to that of flow equalization in the first and second downstream channels of the thick-walled screen. In turn, this requires flow equalization in the corresponding cross-sections of the upstream channels. The validity of the proposed design method was assessed through a case study. The effect of different design parameters on the flow non-uniformity in the downstream channels has been established. The design equation is proposed to calculate the optimum values of the screen parameters. The CFD results on flow distribution were experimentally validated by Laser Doppler Anemometry measurements in the range of Reynolds numbers from 6 to 113. The measured flow non-uniformity in the separate reactor channels was below 2%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulation of the autoclave manufacturing technique of composites can yield a preliminary estimation of induced residual thermal stresses and deformations that affect component fatigue life, and required tolerances for assembly. In this paper, an approach is proposed to simulate the autoclave manufacturing technique for unidirectional composites. The proposed approach consists of three modules. The first module is a Thermo-chemical model to estimate the temperature and the degree of cure distributions in the composite part during the cure cycle. The second and third modules are a sequential stress analysis using FE-Implicit and FE-Explicit respectively. User-material subroutine is used to model the Viscoelastic properties of the material based on theory of micromechanics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fatigue damage calculations of unidirectional polymer composites is presented applying micromechanics theory. An orthotropic micromechanical damage model is integrated with an isotropic fatigue evolution model to predict the micromechanical fatigue damage of the composite structure. The orthotropic micromechanical damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. The advantage of using this approach is the cheap determination of model parameters since the orthotropic damage model parameters can be determined using available data from quasi-static loading tests. Decomposition of the state variables down to the constituent scale is accomplished by micromechanics theory. Phenomenological damage evolution models are then postulated for each constituent and for interphase among them. Comparison between model predictions and experimental data is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new model for fatigue damage evolution of polymer matrix composites (PMC) is presented. The model is based on a combination of an orthotropic damage model and an isotropic fatigue evolution model. The orthotropic damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. This approach facilitates the determination of model parameters since the orthotropic damage model parameters can be determined from available data from quasi-static-loading tests. Then, limited amount of fatigue data is needed to adjust the fatigue evolution model. The combination of these two models provides a compromise between efficiency and accuracy. Decomposition of the state variables down to the constituent scale is accomplished by micro-mechanics. Phenomenological damage evolution models are then postulated for each constituent and for the micro-structural interaction among them. Model parameters are determined from available experimental data. Comparison between model predictions and additional experimental data is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the characteristics of silicon piezoresistors with various doping concentrations and Length/Width dimensions at micro level. The silicon piezoresistors have been produced by conventional fabrication methods. The measurements are conducted on silicon test chips where p type resistors are fabricated on n type (100) silicon substrates along the <110> direction. A four point bending setup has been designed and fabricated for characterizing the piezoresistor sets. The four point bending setup is used to apply uniform uniaxial stress along the <110> direction. This experimental result demonstrates a good linear relationship between resistance change and stress applied. The effect of doping concentration on temperature sensitivity is also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 200 known diseases are transmitted via foods or food products. In the United States, food-borne diseases are responsible for 76 million cases of illness, 32,500 cases of hospitalisation and 5000 cases of death yearly. The ongoing increase in worldwide trade in livestock, food, and food products in combination with increase in human mobility (business- and leisure travel, emigration etc.) will increase the risk of emergence and spreading of such pathogens. There is therefore an urgent need for development of rapid, efficient and reliable methods for detection and identification of such pathogens.

Microchipfabrication has had a major impact on electronics and is expected to have an equally pronounced effect on life sciences. By combining micro-fluidics with micromechanics, micro-optics, and microelectronics, systems can be realized to perform complete chemical or biochemical analyses. These socalled ’Lab-on-a-Chip’ will completely change the face of laboratories in the future where smaller, fully automated devices will be able to perform assays faster, more accurately, and at a lower cost than equipment of today. A general introduction of food safety and applied micro-nanotechnology in life sciences will be given. In addition, examples of DNA micro arrays, micro fabricated integrated PCR chips and total integrated lab-on-achip systems from different National and EU research projects being carried out at the Laboratory of Applied Micro- Nanotechnology (LAMINATE) group at the National Veterinary Institute (DTU-Vet) Technical University of Denmark and the BioLabchip group at the Department of Micro and Nanotechnology (DTU-Nanotech), Technical University of Denmark (DTU), Ikerlan-IK4 (Spain) and other 16 partners from different European countries will be presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Milling is an important operation in many industries, such as mining and pharmaceutical. Although the comminution process during milling has been extensively studied, the material fragmentation mechanisms in a mill are still not well understood partly because of the lack of an understanding on the local stressing and dynamic information under operational conditions in mills. This paper presents a DEM simulation of particle dynamics and impact events in a centrifugal impact pin mill. The main focus is the statistical characteristics of the dominant stressing modes during the milling process. The frequency, velocity and force of the different impact events between particles and mill components, or between particles, are analysed. © 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites containing saturated fluid are widely distributed in nature, such as saturated rocks, colloidal materials and biological cells. In the study to determine effective mechanical properties of fluid-saturated composites, a micromechanical model and a multi-scale homogenization-based model are developed. In the micromechanical model the internal fluid pressure is generated by applying eigenstrains in the domain of the fluid phase and the explicit expressions of effective bulk modulus and shear modulus are obtained. Meanwhile a multi-scale homogenization theory is employed to develop the homogenization-based model on determination of effective properties at the small scale in a unit cell level. Applying the two proposed approaches, the effects of the internal pressure of hydrostatic fluid on effective properties are further investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work introduces a double inclusion elasto-plastic self-consistent (DI-EPSC) scheme for topologies in which crystals can contain subdomains (i.e. twins, etc.). The approach yields a direct coupling between the mechanical response of grains and their subdomains via a concentration relationship on mean fields derived from both the Eshelby and the Tanaka-Mori properties. The latent effect caused by twinning on the mechanical response is observed on both initially extruded and non-textured Mg alloys. For twinned grains, it is shown that deformation system activities and plastic strain distributions within twins drastically depend on the interaction with parent domains. Moreover, a quantitative study on the coupled influence of secondary slip activities on the material response is proposed. © 2014 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparison between the elastic modulus of carbon nanotube (CNT) polymer nano composites predicted by classical micromechanics theories, based on continuum mechanics and experimental data, was made and the results revealed a great difference. To improve the accuracy of these models, a new two-step semi-analytical method was developed, which allowed consideration of the effect of the interphase, in addition to CNT and matrix, in the modeling of nanocomposites. Based on this developed method, the inuence of microstructural parameters, such as CNT volume fraction, CNT aspect ratio, partial and complete agglomerations of CNTs, and overlap and exfoliation of CNTs, on the overall elastic modulus of nanocomposites was investigated. ©2014 Sharif University of Technology. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plastic strain gradients can influence the work-hardening behaviour of metals due to the accumulation of geometrically necessary discolations at the micron/submicron scale. A finite element model based on the conventional theory of mechanism-based strain-gradient plasticity has been developed to simulate the micropillar compression of Cu–Fe thin films and multilayers. The modelling results show that the geometric constraints lead to inhomogeneous deformation in the Cu layers, which agrees well with the bulging of Cu layers observed experimentally. Plastic strain gradients develop inside the individual layers, leading to extra work-hardening due to the accumulation of geometrically necessary dislocations. In the multilayer specimens, the Cu layers deform more severely than the Fe layers, resulting in the development of tensile stresses in the Fe layers. It is proposed that these tensile stresses are responsible for the development of micro-cracks in the Fe layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent mechanical characteristics and relatively low density. Non-destructive testing techniques are being used in the characterization of composite materials. Among these, vibration testing is one of the most used tools because it allows the determination of the mechanical properties. In this work, the viscoelastic properties such as elastic (E') and viscous (E) responses were obtained for aluminum 2024 alloy; carbon fiber/epoxy; glass fiber/epoxy and their hybrids aluminum 2024 alloy/carbon fiber/epoxy and aluminum 2024 alloy/glass fiber/epoxy composites. The experimental results were compared to calculated E modulus values by using the composite micromechanics approach. For all specimens studied, the experimental values showed good agreement with the theoretical values. The damping behavior, i.e. The storage modulus and the loss factor, from the aluminum 2024 alloy and fiber epoxy composites can be used to estimate the viscoelastic response of the hybrid FML. (c) 2005 Elsevier Ltd. All rights reserved.