242 resultados para LiF
Resumo:
In collisions between slow F2+ ions (30 keV) and molecular targets, adenine, scattered particle production yields have been measured directly by simultaneous detection of neutrals, positive and negative ions. The relative cross-section for a negative ion formation channel was measured to be 1%. Despite a slight decrease compared to a larger target, the fullerene C-60, the measured negative ion formation cross section is still at least one order of magnitude larger than the yield in ion-atom interactions.
Resumo:
Mutation of hMLH1 gene plays an important role in human tumorigenesis. A highly sensitive single-strand conformation polymorphism (SSCP) method for detection of the T1151A mutation in exon 12 of the hMLH1 gene was for the first time developed employing laser-induced fluorescence capillary electrophoresis (LIF-CE). Effects of the concentration of linear polyacrylamide solution, running temperature, running voltage and the addition of glycerol on SSCP analysis were investigated, and the optimum separation conditions were defined. Thirty colorectal cancer patients and eight lung cancer patients were screened and the T1151A mutation was found in four of them. Based on CE-sequencing the mutation was further confirmed. To our knowledge, this is for the first time that the T1151A mutation is found in lung cancer. Our method is simple, rapid, and highly sensitive and is well suited to the analysis of large numbers of clinical samples.
Resumo:
The development of a method for determining arsenic species by capillary zone electrophoresis (CZE) with indirect laser-induced fluorescence (LIF) is described in this paper. The buffer pH, the concentration of fluorescein, the nature and the concentration of the background electrolytes (BGEs) were defined. When 2.0 mM NaHCO3 (pH 9.28) with 10(-7) M fluorescein was used as the buffer, arsenite (As(lll), dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), and arsenate (As(V)) were all separated from one another. The limits of detection for the four arsenic species were p p in the range of 0.12-0.54 mg/L. This method was used in the analysis of spiked arsenic species in tap and mineral water to demonstrate its usefulness. The results showed that both the recovery and the reproducibility of the developed method were acceptable.
Resumo:
Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)) instead of PBS was applied as running buffers in microchip electrophoresis.
Resumo:
In order to realize the common-emitter characteristics of the tris(8-hydroxyquinoline) aluminium (Alq(3))-based organic transistors, we used Au/Al double metal layer as the base, thus the vertical metal-base transistors with structure of Al/n-Si/Au/Al/Alq(3)/LiF/Al were constructed. It was found that the contact properties between the base and the organic semiconductors play an important role in the device performance. The utilization of Au/Al double layer metal base allows the devices to operate at high gain in the common-emitter and common-base mode at low operational voltage.
Resumo:
We report the fabrication of permeable metal-base transistors based on bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-biphenyl-4-olato) aluminum (BAlq(3))/tri(8-hydroxyquinoline) aluminum (Alq(3)) isotype heterostructure as emitter layer. In this transistor, n-Si was used as the collector, LiF/Al as the emitter electrode, and Au/Al bilayer metal as the base. We show that the leakage current is greatly reduced in Al/n-Si/Au/Al/BAlq(3)/Alq(3)/LiF/Al devices with respect to Al/n-Si/Au/Al/Alq(3)/LiF/Al devices due to the utilization of BAlq(3)/Alq(3) isotype heterostructure emitter, leading to high common-base and common-emitter current gains at low driving voltages.
Resumo:
Efficient white organic light-emitting diodes (WOLEDs) using europium complex as the red unit are presented. The WOLEDs were fabricated by using the structure of indium tin oxide (ITO)/N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB)/4,4-N, N-dicarbazolebiphenyl (CBP) : bis(2,4-diphenylquinolyl-N, C-2) iridium (acetylacetonate) ((PPQ)(2)Ir(acac)) : Eu (III) tris(thenoyltrifluoroacetone) 3,4,7,8-tetramethyl-1,10-phenanthroline (Eu(TTA)(3)(Tmphen))/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN) : p-bis (p-N, N-di-phenyl-aminostyryl)benzene (DSA-Ph)/9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/tris(8-hydroxyquinoline) aluminium (Alq3)/LiF/Al.
Resumo:
White light emission from tandem organic light-emitting diodes consisting of blue and red light units separated by a transparent interconnecting layer of Al/WO3/Au has been realized. The devices have a structure of indium-tin-oxide (ITO)/molybdenum oxide (MoO3) (8 nm)/N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB)(100 nm)/p-bis(p-N, N-diphenyl-aminostyryl) benzene) (DSA-ph): 2-methyl-9,10-di(2-naphthyl) anthracene (MADN)(40 nm)/tris(8-hydroxylquinoline) aluminium (Alq(3)) (10 nm)/LiF(1 nm)/Al(2 nm)/WO3(3 nm)/Au(16 nm)/MoO3(5 nm)/NPB(60 nm)/Alq(3): 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)(30 nm)/Alq3(30 nm)/LiF(1 nm)/Al(150 nm).
Resumo:
We have investigated the effects of thermal annealing before and after cathode deposition on poly(3-hexylthiophene)(P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend photovoltaic cells with different cathode buffer layers. The introduction of cathode buffer layer such as lithium fluoride (LiF) and calcium oxide (CaO) in pre-annealing cells can increase the open-circuit voltage (V-oc) and the power conversion efficiency (PCE). Post thermal annealing after cathode deposition further enhanced the PCE of the cells with LiF/Al cathode.
Resumo:
A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.
Resumo:
Lead(IV) dioxide (PbO2) has been used as the electron injection layer (EIL) to realize high-efficiency inverted top-emitting organic light-emitting diodes (I-TOLEDs). It can be seen that the inserting of the PbO2 EIL significantly reduces operational voltage, thus greatly improving the current efficiency and power efficiency of fabricated I-TOLEDs. The 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one (C545T)-based I-TOLEDs with the PbO2 EIL exhibit a maximum current efficiency of 31.6 cd A(-1) and a maximum power efficiency of 14.3 lm W-1, which are both higher than 22.5 cd A(-1) and 5.4 lm W-1 of the I-TOLEDs with LiF as the EIL respectively. A detailed analysis with respect to the role mechanism of PbO2 in electron injection has been presented. The improvement in EL performance is attributed to the formation of the interfacial dipoles at the electrode interface due to charge transfer between PbO2 and Alq(3).
Resumo:
series of a donor-acceptor-donor type of near-infrared (NIR) fluorescent chromophores based on [1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ) as an electron acceptor and triphenylamine as an electron donor are synthesized and characterized. By introducing pendent phenyl groups or changing the pi-conjugation length in the TQ core, we tuned tile energy levels of these chromophores, resulting in the NIR emission in a range from 784 to 868 nm. High thermal stability and glass transition temperatures allow these chromophores to be used as dopant emitters, which can be processed by vapor deposition for the fabrication of organic light-emitting diodes (OLEDs) having the multilayered structure of ITO/MoO3/NPB/Alq(3):dopant emitter/BCP/Alq(3)/LiF/Al. The electroluminescence spectra of the devices based on these new chromophores cover a range from 748 to 870 nm. With 2 wt % of dopant 1, the LED device shows an exclusive NIR emission at 752 nm with the external quantum efficiency (EQE) as high as 1.12% over a wide range of current density (e.g., around 200 mA cm(-2)).
Resumo:
novel compound (BCBP) based on the modification of a well-known host material 4,4'-(bis(9-carbazolyl))biphenyl (CBP) through arylmethylene bridge linkage was synthesized, and fully characterized. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied. A high glass transition temperature (T-g) of 173 degrees C is observed for BCBP due to the introduction of the bridged structure, remarkably contrasting with a low T-g of 62 degrees C for CBP. Furthermore, the bridged structure enhances the conjugation and raises the HOMO energy, thus facilitating hole-injection and leading to a low turn-on voltage in an electroluminescent device. With the device structure of ITO/MoO3/NPB/Ir complex: BCBP/BCP/Alq(3)/LiF/Al, maximum power efficiencies of 41.3 lm/W and 6.3 lm/W for green- and blue-emitting OLED were achieved, respectively.
Resumo:
A series of carbazole derivatives was synthesized and their electrical and photophysical properties were investigated. It is shown that the triplet energy levels of these hosts are higher than that of the most popular blue phosphorescent material iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C-2'] picolinate (FIrpic) and the most extensively used phosphorescent host material 4,4'-N,N'-dicarbazole-biphenyl (CBP). These new host materials also showed good thermal stability and high glass transition temperatures (T-g) ranging from 78 to 115 degrees C as the linkage group between the carbazoles was altered. Photophysical measurements indicate that the energy transfer between these new hosts and FIrpic is more efficient than that between CBP and FIrpic. Devices incorporating these novel carbazole derivatives as the host material doped with FIrpic were fabricated with the configurations of ITO/NPB (40 nm)/host:FIrpic (30 nm)/BCP (15 nm)/AlQ (30 nm)/LiF (1 nm)/Al (150 nm). High efficiencies (up to 13.4 cd/A) have been obtained when 1,4-bis (4-(9H-carbazol-9-yl)phenyl)cyclohexane (CBPCH) and bis(4-(9H-carbazol-9-yl)phenyl) ether (CBPE) were used as the host, respectively.
Resumo:
Four diboron-contained ladder-type pi-conjugated compounds 1-4 were designed and synthesized. Their thermal, photophysical, electrochemical properties, as well as density functional theory calculations, were fully investigated. The single crystals of compounds 1 and 3 were grown, and their crystal structures were determined by X-ray diffraction analysis. Both compounds have a ladder-type g-conjugated framework. Compounds I and 2 possess high thermal stabilities, moderate solid-state fluorescence quantum yields, as well as stable redox properties, indicating that they are possible candidates for emitters and charge-transporting materials in electroluminescent (EL) devices. The double-layer device with the configuration of [ITO/NPB (40 nm)/1 or 2 (70 nm)/LiF (0.5 nm)/Al (200 nm)] exhibited good EL performance with the maximum brightness exceeding 8000 cd/m(2).