951 resultados para Laser-induced damage threshold (LIDT)
Resumo:
abstract {LaF3 single-layer coatings were prepared by thermal boat evaporation at the deposition temperatures of 189, 255, 277 and 321°C respectively. The crystal structures of the coatings were characterized by X-ray diffraction (XRD). A spectrophotometer was employed to measure its transmittance. Moreover, refractive index, extinction coefficient and cut-off wavelength were obtained from the measured transmittance spectral curve. The residual stress was evaluated by the Stoney's equation and optical interferometer. Laser induce damage threshold (LIDT) was performed by a tripled Nd:YAG laser system. The results show that the crystallization status becomes better with the deposition temperature increasing. Correspondingly, the grain size also gets larger. Meanwhile, the coatings become more compact and the refractive index increases. However, the absorption of coatings seriously rises and the cut-off wavelength drifts to the long wave. In addition, the residual stress also increases and the intrinsic stress plays a determinant role in the coating. The LIDT of the coating also enhances at high temperature.}
Resumo:
基于啁啾脉冲放大技术的超短脉冲激光系统是提供超快、超强激光的重要途径,具有良好输出波形和高损伤阈值的多层介质膜脉冲宽度压缩光栅是获得高峰值功率脉冲激光的关键。基于傅里叶谱变换方法和严格模式理论,分析了多层介质膜光栅(MDG)在超短脉冲作用下的光学特性。结果表明,当MDG的反射带宽小于具有高斯分布的入射脉冲的频谱宽度时,-1级反射脉冲呈非对称高斯分布,其前沿出现振荡,并且-1级反射脉冲能量开始剧烈下降,讨论了MDG结构参数对其反射带宽的影响。分析了MDG与超短脉冲作用时的近场光分布,对提高其抗激光损伤特性具
Resumo:
采用有氧热处理、激光预处理和离子后处理三种方式对电子束蒸发(EBE)制备的单层ZrO_2薄膜进行了后处理,并分别对样品的光学性能和抗激光损伤阈值(LIDT)特性进行了研究。实验结果表明,热处理方式可以有效排除膜层内吸附的水气,弥补薄膜制备过程中的氧损失,使得光谱短移、吸收减小、损伤阈值增高;激光预处理过程可以在一定程度上减少缺陷、提高损伤阈值,但对膜层的光谱和吸收情况没有明显的改善作用;而离子后处理能够提高膜层的堆积密度、减少缺陷、降低吸收从而提高损伤阈值。由于三种方式处理机制不同,在实际应用中应根据膜层的性能选择合适的处理方式。
Resumo:
用热舟蒸发法结合修正挡板技术制备了355 nm LaF3/MgF2增透膜,并对部分样品进行了真空退火。采用Lambda 900光谱仪测试了增透膜的低反光谱和透射光谱,并考察了其光谱稳定性;使用脉冲8 ns的355 nm激光测试了增透膜的激光损伤阈值(LIDT);采用Normarski显微镜对增透膜的表面缺陷密度和破斑形貌进行了观察。实验结果表明,制备得到的增透膜的剩余反射率较低,光谱稳定性好;真空退火对增透膜的激光损伤阈值没有改善;增透膜的破环形貌为散点形式,结合破斑深度测试表明薄膜的破坏源于薄膜和基底界面的缺陷点。JGS1熔石英基底由于有好的表面状况、固有的高激光损伤阈值和以其为基底的增透膜具有更低的表面场强,使得其上的增透膜有更高的抗激光损伤能力。
Resumo:
LaF3 thin films were prepared by thermal boat evaporation at different substrate temperatures and various deposition rates. X-ray diffraction (XRD), Lambda 900 spectrophotometer and X-ray photoelectron spectroscopy (XPS) were employed to study crystal structure, transmittance and chemical composition of the coatings, respectively. Laser-induce damage threshold (LIDT) was determined by a tripled Nd:YAG laser system with a pulse width of 8 ns. It is found that the crystal structure became more perfect and the refractive index increased gradually with the temperature rising. The LIDT was comparatively high at high temperature. In the other hand, the crystallization status also became better and the refractive index increased when the deposition rate enhanced at a low level. If the rate was super rapid, the crystallization worsened instead and the refractive index would lessen greatly. On the whole, the LIDT decreased with increasing rate. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64±0.19 and 20.60±0.36 GW cm−2 at 1064 nm and 18.44±0.31 and 7.52±0.22 GW cm−2 at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.
Resumo:
Single-shot laser damage threshold of MgO for 40-986 fs, 800 nm laser pulses is reported. The pump-probe measurements with femtosecond pulses were carried out to investigate the time-resolved electronic excitation processes. A theoretical model including conduction band electrons (CBE) production and laser energy deposition was applied to discuss the roles of multiphoton ionization (MPI) and avalanche ionization in femtosecond laser-induced dielectric breakdown. The results indicate that avalanche ionization plays the dominant role in the femtosecond laser-induced breakdown in MgO near the damage threshold. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report the single-shot damage thresholds of MgF2/ZnS onmidirectional reflector for laser pulse durations from 50 A to 900 fs. A coupled dynamic model is applied to study the damage mechanisms, in which we consider not only the electronic excitation of the material, but also the influence of this excitation-induced changes in the complex refractive index of material on the laser pulse itself. The results indicate that this feedback effect plays a very important role during the damage of material. Based on this model, we calculate the threshold fluences and the time-resolved excitation process of the multiplayer. The theoretical calculations agree well with our experimental results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P2(1)2(1)2(1). The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm(2) for a single shot of laser of 1064 nm wavelength.
Resumo:
The primary and secondary threshold intensities of ultraviolet-laser-induced preferential domain nucleation in nearly stoichiometric LiTaO3 is observed. The primary threshold is the minimum intensity to achieve the instantaneous preferential domain nucleation within the focus by the combined action of irradiation and electric fields. The secondary threshold is the minimum intensity to achieve the memory effect without any irradiation within the original focus. The space charge field created by the photoionization carriers is thought to be responsible for the instantaneous effect. The explanation based on the formation and transformation of extrinsic defect is presented for the memory effect. (c) 2008 American Institute of Physics.
Resumo:
Absorption of host and the temperature-dependence of absorption coefficient have been considered in evaluating temperatures distribution in films, when laser pulse irradiates on films. Absorption of dielectric materials experience three stages with the increase of temperature: multi-photon absorption; single photon absorption; metallic absorption. These different absorption mechanisms correspond to different band gap energies of materials, which will decrease when the temperature of materials increases. evaluating results indicate that absorption of host increases rapidly when the laser pulse will be over. If absorption of host and the temperature-dependence of absorption are considered, the material temperatures in films will be increased by a factor of four.
Resumo:
The recent commissioning of a X-ray free-electron laser triggered an extensive research in the area of X-ray ablation of high-Z, high-density materials. Such compounds should be used to shorten an effective attenuation length for obtaining clean ablation imprints required for the focused beam analysis. Compounds of lead (Z=82) represent the materials of first choice. In this contribution, single-shot ablation thresholds are reported for PbWO4 and PbI2 exposed to ultra-short pulses of extreme ultraviolet radiation and X-rays at FLASH and LCLS facilities, respectively. Interestingly, the threshold reaches only 0.11 J/cm(2) at 1.55 nm in lead tungstate although a value of 0.4 J/cm(2) is expected according to the wavelength dependence of an attenuation length and the threshold value determined in the XUV spectral region, i.e., 79 mJ/cm(2) at a FEL wavelength of 13.5 nm. Mechanisms of ablation processes are discussed to explain this discrepancy. Lead iodide shows at 1.55 nm significantly lower ablation threshold than tungstate although an attenuation length of the radiation is in both materials quite the same. Lower thermal and radiation stability of PbI2 is responsible for this finding.