943 resultados para INJECTION-ANALYSIS
Resumo:
A detailed study of voltammetric behavior of ethiofencarb (ETF) is reported using glassy carbon electrode (GCE) and hanging mercury drop electrode (HMDE). With GCE, it is possible to verify that the oxidative mechanism is irreversible, independent of pH, and the maximum intensity current was observed at +1.20 V vs. AgCl/Ag at pH 1.9. A linear calibration line was obtained from 1.0x10-4 to 8.0x10-4 mol L-1 with SWV method. To complete the electrochemical knowledge of ETF pesticide, the reduction was also explored with HMDE. A well-defined peak was observed at –1.00V vs. AgCl/Ag in a large range of pH with higher signal at pH 7.0. Linearity was obtained in 4.2x10-6 and 9.4x10-6 mol L-1 ETF concentration range. An immediate alkaline hydrolysis of ETF was executed, producing a phenolic compound (2-ethylthiomethylphenol) (EMP), and the electrochemical activity of the product was examined. It was deduced that it is oxidized on GCE at +0.75V vs. AgCl/Ag with a maximum peak intensity current at pH 3.2, but the compound had no reduction activity on HMDE. Using the decrease of potential peak, a flow injection analysis (FIA) system was developed connected to an amperometric detector, enabling the determination of EMP over concentration range of 1.0x10-7 and 1.0x10-5 mol L-1 at a sampling rate of 60 h-1. The results provided by FIA methodology were performed by comparison with results from high-performance liquid chromatography (HPLC) technique and demonstrated good agreement with relative deviations lower than 4%. Recovery trials were performed and the obtained values were between 98 and 104%.
Resumo:
A novel biomimetic sensor for the potentiometric transduction of oxytetracycline is presented. The artificial host was imprinted in methacrylic acid and/or acrylamide based polymers. Different amounts of molecularly imprinted and non-imprinted polymers were dispersed in different plasticizing solvents and entrapped in a poly(vinyl chloride) matrix. Only molecularly imprinted based sensors allowed a potentiometric transduction, suggesting the existence of host–guest interactions. These sensors exhibited a near-Nernstian response in steady state evaluations; slopes and detection limits ranged 42–63 mV/decade and 2.5–31.3 µg/mL, respectively. Sensors were independent from the pH of test solutions within 2–5. Good selectivity was observed towards glycine, ciprofloxacin, creatinine, acid nalidixic, sulfadiazine, cysteine, hydroxylamine and lactose. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (65 mV/decade), wide linear range (5.0×10−5 to 1.0×10−2 mol/L), low detection limit (19.8 µg/mL), and a stable baseline for a 5×10−3M citrate buffer (pH 2.5) carrier. The sensors were successfully applied to the analysis of drugs and urine. This work confirms the possibility of using molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
Ascorbic acid is found in many food samples. Its clinical and technological importance demands an easyto- use, rapid, robust and inexpensive method of analysis. For this purpose, this work proposes a new flow procedure based on the oxidation of ascorbic acid by periodate. A new potentiometric periodate sensor was constructed to monitor this reaction. The selective membranes were of PVC with porphyrin-based sensing systems and a lipophilic cation as additive. The sensor displayed a near-Nernstian response for periodate over 1.0x10-2–6.0x10-6 M, with an anionic slope of 73.9 ± 0.9 mV decade-1. It was pH independent in acidic media and presented good selectivity features towards several inorganic anions. The flow set-up operated in double-channel, carrying a 5.0x10-4 M IO- 4 solution and a suitable buffer; these were mixed in a 50-cm reaction coil. The overall flow rate was 7 ml min-1 and the injection volume 70 µl. Under these conditions, a linear behaviour against concentration was observed for 17.7–194.0 µg ml-1, presenting slopes of 0.169 mV (mg/l)-1, a reproducibility of ±1.1 mV (n = 5), and a sampling rate of ~96 samples h-1. The proposed method was applied to the analysis of beverages and pharmaceuticals.
Resumo:
Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. A Biomimetic Sensor Potentiometric System was developed for assessment of doxycycline (DOX) antibiotic. The molecularly imprinted polymer (MIP) was synthesized by using doxycycline as a template molecule, methacrylic acid (MAA) and/or acrylamide (AA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensing elements were fabricated by the inclusion of DOX imprinted polymers in polyvinyl chloride (PVC) matrix. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near-Nernstian response. MIP/MAA membrane sensor was incorporated in flow-through cells and used as detectors for flow injection analysis (FIA) of DOX. The method has the requisite accuracy, sensitivity and precision to assay DOX in tablets and biological fluids.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Royal Netherlands Institute for Sea Research, Holanda, durant març i abril de 2007. Els glicerol dialkil glicerol tetraèters (GDGTs) són un grup de lípids presents a les membranes dels arqueobacteris que es troben presents en ambients aquàtics, en sòls i en sediments. La distribució d’aquests lípids en sediments s’utilitza per al càlcul dels índexs TEX86 i BIT, els quals són usats en estudis paleoambientals per reconstruir la temperatura i l’aport relatiu de matèria orgànica terrestre als sediments. El mètode d’anàlisi dels GDGTs intactes consisteix en HPLC/APCIMS (High performance liquid cromatography/Atmospheric pressure chemical ionization-Mass spectrometry). S’han comparat les tècniques d’anàlisi dels GDGTs entre el laboratori on s’ha realitzat l’estada i l’ICTA (UAB, Barcelona). Els resultats mostren que existeix una desviació de poca magnitud en el càlcul del TEX86 i el BIT explicat per diferències en el disseny de l’espectròmetre de masses i el procés d’integració dels cromatogrames obtinguts. Així mateix la diferència del procediment utilitzat per a la purificació de la mostra és responsable d’una divergència més important en l’obtenció dels índexs. Aquests resultats demostren que el procés de preparació de la mostra és crític en el càlcul dels índexs i ja s’estan realitzant proves per tal de determinar la causa de la discrepància. D’altra banda, l’estada al laboratori del NIOZ ha propiciat també l’aprenentatge de les tècniques emprades per a l’aïllament individual dels GDGTS, tals com la cromatografia líquida preparativa i el FIA (flow injection analysis). Aquest coneixement s’ha aplicat al laboratori de l’ICTA (UAB) per adaptar el procediment d’aïllament.
Resumo:
In this article, selected examples of applications of liquid chromatography coupled to mass spectrometry are given. The examples include the analysis of i) impurities in manufactured, pharmaceutical or synthesis products, ii) polyphenols in natural products, and iii) phytohormones in plant extracts. Finally, examples of applications of molecular characterization via flow injection analysis by electron spray ionization mass spectrometry (ESI-MS) are also given.
Resumo:
This review presents the latest advances of the mechanisation in sample preparation using microwave oven. The fundamental principles of microwaves field interaction with matter are presented, followed by the basic principles of microwave equipment construction. Hyphenation of microwave oven with flow injection analysis or robotic are discussed as well as some metodological difficulties and solutions by its implementation.
Resumo:
An automatic system for the direct determination of lead and tin by atomic absorption spectrometry is described. The on-line treatment of the metallic samples was obtained by anodic electrodissolution in a flow injection system. Lead was determined by flame atomic absorption spectrometry (FAAS) and tin by graphite furnace atomic absorption spectrometry (GFAAS). A computer program managed the current source and the solenoid valves that direct the fluids. Good linear correlations between absorbance and current intensity for lead and tin were observed. Results were in agreement with the certified values. Precision was always better than 5%. The recommended procedure allows the direct determination of 60 or 30 elements/h using FAAS or GFAAS, respectively.
Resumo:
Didactic experiments are proposed in order to demonstrate the characteristics of flow injection analysis and to extend the applications of FIA to the determination of physical chemistry parameters in undergraduate labs. All experiments can be performed with the same flow manifold by employing usual FIA devices. Analytical characteristics are presented by means of the determination of iron in river water, employing 1,10-phenantroline as chromogenic reagent. Physical chemistry applications were the determination of reaction stoichiometries by continuous variation and mole-ratio methods and the evaluation of the pH and ionic strength effects on the kinetic of the reduction of hexacianoferrate(III) by ascorbic acid.
Resumo:
A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.
Resumo:
A spectrophotometric flow injection analysis (FIA) procedure employing natural urease enzyme source for the determination of urea in animal blood plasma was developed. Among leguminous plants used in the Brazilian agriculture, the Cajanus cajan specie was selected as urease source considering its efficiency and availability. A minicolumn was filled with leguminous fragments and coupled to the FIA manifold, where urea was on-line converted to ammonium ions and subsequently it was quantified by spectrophotometry. The system was employed to determine urea in animal plasma samples without any prior treatment. Accuracy was assessed by comparison results with those obtained employing the official procedure and no significant difference at 90 % confidence level was observed. Other profitable features such as an analytical throughput of 30 determinations per hour, a reagent consumption of 19.2 mg sodium salicylate, 0.5 mg sodium hipochloride and a relative standard deviation of 1.4 % (n= 12) were also obtained.
Resumo:
This paper describes a sequential injection analysis (SIA) set-up coupled to a flame atomic absorption spectrometer (FAAS) to accomplish the determination of low concentrations of copper in drinking waters. Copper is first retained under neutral media in an on-line 29x1.6 mm column filled with poly(ethylenimine) immobilised on silica gel. The retained analyte is then eluted by flowing through the column 250 mL of a nitric acid solution. The selection of 3.85 ml of sample enabled to obtain a detection limit of 0.27 mug/L and a sampling rate of about 24 samples/h. There was a good agrement between the results of 12 samples furnished by the proposed procedure and by electrothermal atomic absorption spectrometry. Repeatability assessment gave a relative standard deviation of 1.3 % after ten replicate analysis of a sample containing about 70 mug/L in copper..
Resumo:
An important component for the automation of flow injection analysis (FIA) systems is the sample injection valve. A simple and inexpensive commutator with 16 pinch valves (8 normally open and 8 closed) was developed and configured as a multichannel injection valve. It is activated by a single solenoid of 3 Kgf, powered by a pulsed driver circuit, controlled by a microcomputer or a switch. FIA with spectrophometric detection of potassium dichromate solution was used for the evaluation of the new injection valve and its comparison with other valves, for sample loops of 50, 100, 200, 300 and 500 muL. The repeatability was favorable (RSD 1.0% for 15 injections at each loop volume) compared to a manual injector, an electropneumatic injector and an injector configured with three mini solenoid valves (RSD 1.1, 1.3 and 1.0%, respectively, for15 injections at each loop volume).
Resumo:
A review about the state-of-the-art of flow injection analysis (FIA) -- capillary electrophoresis (CE) systems is presented. The basic principles of flow injection and capillary electrophoresis are briefly revised. The main aspects of the FIA-CE hybridization, including advantages and shortcomings, are discussed. Some applications involving all different designs are also presented. This review covers the literature from 1997 up to 2000.
Resumo:
This technical note describes a new and simple electronic circuit for driving solenoid valves. The circuit is based on a single integrated circuit DRV103, which is able to drive resistive or inductive loads up to 1.5 A. Switching of 12-V loads can be controlled by TTLlevel signals in two distinct steps. Initially, 12 V is applied during 110 ms, followed by 4.2 V RMS until the end of the activation TTL pulse. This mode of operation is particularly suitable to drive solenoids, because it requires a higher voltage to start and a lower maintenance voltage. By using this circuit, power consumption and heating are reduced and the solenoid lifetime is enhanced. Moreover, this circuit is specially appropriated to build computercontrolled solenoid valves systems.