982 resultados para Hybrid integrated circuits
Resumo:
This paper describes a analog implementation of radial basis neural networks (RBNN) in BiCMOS technology. The RBNN uses a gaussian function obtained through the characteristic of the bipolar differential pair. The gaussian parameters (gain, center and width) is changed with programmable current source. Results obtained with PSPICE software is showed.
Resumo:
A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.
Resumo:
This paper discusses a design approach for a high-Q low-sensitivity OTA-C biquad bandpass section. An optimal relationship is established between transconductances defining the differenceβ - γ in the Q-factor denominator, setting the Q-sensitivity to tuning voltages around unity. A 30-MHz filter was designed based on a 0.35μn CMOS process and VDD=3.3V. A range of circuit simulation supports the theoretical analysis. Q-factor spans from 20.5 to 60, while ensuring filter stability along the tuning range. Although a Mode-operating OTA is used, the procedure can be extended to other types of transconductor.
Resumo:
A quasi-sinusoidal linearly tunable OTA-C VCO built with triode-region transconductors is presented. Oscillation upon power-on is ensured by RHP poles associated with gate-drain capacitances of OTA input devices. Since the OTA nonlinearity stabilizes the amplitude, the oscillation frequency f0 is first-order independent of VDD, making the VCO adequate to mixed-mode designs. A range of simulations attests the theoretical analysis. As part of a DPLL, the VCO was prototyped on a 0.8μm CMOS process, occupying an area of 0.15mm2. Nominal f0 is 1MHz, with K VCo=8.4KHz/mV. Measured sensitivity to VDD is below 2.17, while phase noise is -86dBc at 100-KHz offset. The feasibility of the VCO for higher frequencies is verified by a redesign based on a 0.35μm CMOS process and VDD=3.3V, with a linear frequency-span of l3.2MHz - 61.5MHz.
Resumo:
A low-voltage low-power 2nd-order CMOS pseudo-differential bump-equalizer is presented. Its topology comprises a bandpass section with adjustable center frequency and quality factor, together with a programmable current amplifier. The basic building blocks are triode-operating transconductors, tunable by means of either a DC voltage or a digitally controlled current divider. The bump-equalizer as part of a battery-operated hearing aid device is designed for a 1.4V-supply and a 0.35μm CMOS fabrication process. The circuit performance is supported by a set of simulation results, which indicates a center frequency from 600Hz to 2.4kHz, 1≤Q≤5, and an adjustable gain within ±6dB at center frequency. The filter dynamic range lies around 40dB. Quiescent consumption is kept below 12μW for any configuration of the filter.
Resumo:
This paper adresses the problem on processing biological data such as cardiac beats, audio and ultrasonic range, calculating wavelet coefficients in real time, with processor clock running at frequency of present ASIC's and FPGA. The Paralell Filter Architecture for DWT has been improved, calculating wavelet coefficients in real time with hardware reduced to 60%. The new architecture, which also processes IDWT, is implemented with the Radix-2 or the Booth-Wallace Constant multipliers. Including series memory register banks, one integrated circuit Signal Analyzer, ultrasonic range, is presented.
Resumo:
An electronic ballast for multiple tubular fluorescent lamps is presented in this paper. The proposed structure features high power-factor, dimming capability, and soft-switching to the semiconductor devices operated in high frequencies. A Zero-Current-Switching - Pulse-Width-Modulated (ZCS-PWM) SEPIC converter composes the rectifying stage, controlled by the instantaneous average input current technique, performing soft-commutations and high input power factor. Regarding the inverting stage, it is composed by a classical resonant Half-Bridge converter, associated to Series Parallel-Loaded Resonant (SPLR) filters. The dimming control technique employed in this Half-Bridge inverter is based on the phase-shift in the current processed through the sets of filter + lamp. In addition, experimental results are shown in order to validate the developed analysis.
Resumo:
This paper addresses the problem of processing biological data, such as cardiac beats in the audio and ultrasonic range, and on calculating wavelet coefficients in real time, with the processor clock running at a frequency of present application-specified integrated circuits and field programmable gate array. The parallel filter architecture for discrete wavelet transform (DWT) has been improved, calculating the wavelet coefficients in real time with hardware reduced up to 60%. The new architecture, which also processes inverse DWT, is implemented with the Radix-2 or the Booth-Wallace constant multipliers. One integrated circuit signal analyzer in the ultrasonic range, including series memory register banks, is presented. © 2007 IEEE.
Resumo:
An analysis of the active pixel sensor (APS), considering the doping profiles of the photodiode in an APS fabricated in a 0.18 μm standard CMOS technology, is presented. A simple and accurate model for the junction capacitance of the photodiode is proposed. An analytic expression for the output voltage of the APS obtained with this capacitance model is in good agreement with measurements and is more accurate than the models used previously. A different mode of operation for the APS based on the dc level of the output is suggested. This new mode has better low-light-level sensitivity than the conventional APS operating mode, and it has a slower temporal response to the change of the incident light power. At 1μW/cm2 and lower levels of light, the measured signal-to-noise ratio (SNR) of this new mode is more than 10 dB higher than the SNR of previously reported APS circuits. Also, with an output SNR of about 10 dB, the proposed dc level is capable of detecting light powers as low as 20 nW/cm2, which is about 30 times lower than the light power detected in recent reports by other groups. © 2007 IEEE.
Resumo:
A novel multisampling time-domain architecture for CMOS imagers with synchronous readout and wide dynamic range is proposed. The architecture was implemented in a prototype of imager with 32x32 pixel array fabricated in AMS CMOS 0.35νm and was characterized for sensitivity and color response. The pixel is composed of an n+/psub photodiode, a comparator and a D flip-flop having 16% fill-factor and 30νmx26νm dimensions. The multisampling architecture requires only a 1 bit per pixel memory instead of 8 bits which is typical for time-domain active pixel architectures. The advantage is that the number of transistors in the pixel is low, saving area and providing higher fill-factor. The maximum frame rate is analyzed as a function of number of bits and array size. The analysis shows that it is possible to achieve high frame rates and operation in video mode with 10 bits. Also, we present analysis for the impact of comparator offset voltage in the fixed pattern noise. Copyright 2007 ACM.
Resumo:
An analog circuit that implements a radial basis function network is presented. The proposed circuit allows the adjustment of all shape parameters of the radial functions, i.e., amplitude, center and width. The implemented network was applied to the linearization of a nonlinear circuit, a voltage controlled oscillator (VCO). This application can be classified as an open-loop control in which the network plays the role of the controller. Experimental results have proved the linearization capability of the proposed circuit. Its performance can be improved by using a network with more basis functions. Copyright 2007 ACM.
Resumo:
This paper presents the virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, an open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, that is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplish with nonholonomics mobile robots models with diferencial transmission. © 2008 IEEE.
Resumo:
We studied the shape measurement of semiconductor components by holography with photorefractive Bi12TiO20 crystal as holographic medium and two diode lasers emitting in the red region as light sources. By properly tuning and aligning the lasers a synthetic wavelength was generated and the resulting holographic image of the studied object appears modulated by cos2-contour fringes which correspond to the intersection of the object surface with planes of constant elevation. The position of such planes as a function of the illuminating beam angle and the tuning of the lasers was studied, as well as the fringe visibility. The fringe evaluation was performed by the four stepping technique for phase mapping and through the branch-cut method for phase unwrapping. A damage in an integrated circuit was analysed as well as the relief of a coin was measured, and a precision up to 10 μm was estimated. © 2009 SPIE.
Resumo:
A voltage reference with low sensibility to temperature and power-supply that can generate flexible reference values (from milivolts to several volts) is proposed. Designed for AMS 0.35μm CMOS process, the circuit provides a stable output voltage working in the temperature range of -40-150°C. The proposed reference provides a nominal output voltage of 1.358V with a power-supply of 3.3V. © 2011 IEEE.
Resumo:
This paper considers the importance of using a top-down methodology and suitable CAD tools in the development of electronic circuits. The paper presents an evaluation of the methodology used in a computational tool created to support the synthesis of digital to analog converter models by translating between different tools used in a wide variety of applications. This tool is named MS 2SV and works directly with the following two commercial tools: MATLAB/Simulink and SystemVision. Model translation of an electronic circuit is achieved by translating a mixed-signal block diagram developed in Simulink into a lower level of abstraction in VHDL-AMS and the simulation project support structure in SystemVision. The method validation was performed by analyzing the power spectral of the signal obtained by the discrete Fourier transform of a digital to analog converter simulation model. © 2011 IEEE.