An analog implementation of radial basis neural networks (RBNN) using BiCMOS technology


Autoria(s): De Oliveira, J. P.; Oki, N.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/12/2001

Resumo

This paper describes a analog implementation of radial basis neural networks (RBNN) in BiCMOS technology. The RBNN uses a gaussian function obtained through the characteristic of the bipolar differential pair. The gaussian parameters (gain, center and width) is changed with programmable current source. Results obtained with PSPICE software is showed.

Formato

705-708

Identificador

http://dx.doi.org/10.1109/MWSCAS.2001.986285

Midwest Symposium on Circuits and Systems, v. 2, p. 705-708.

http://hdl.handle.net/11449/66666

10.1109/MWSCAS.2001.986285

WOS:000175971700158

2-s2.0-0035575292

Idioma(s)

eng

Relação

Midwest Symposium on Circuits and Systems

Direitos

closedAccess

Palavras-Chave #CMOS integrated circuits #Computer software #Electric currents #Gain measurement #Neural networks #Numerical methods #VLSI circuits #BiCMOS technology #Gaussian function #Programmable current source #Radial basis neural networks #Integrated circuit manufacture
Tipo

info:eu-repo/semantics/conferencePaper