993 resultados para semiconductor films
Resumo:
This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a wide range of technological benefits. Opportunities in ultra-shallow junction formation, heteroepitaxial growth of thin films of cubic silicon carbide on silicon, and crystallization of amorphous silicon films, along with the technical reasons for using flash lamp annealing are discussed in the context of state-of-the-art materials processing. © 2005 IEEE.
Resumo:
Direct formation of large-area carbon thin films on gallium nitride by chemical vapor deposition without metallic catalysts is demonstrated. A high flow of ammonia is used to stabilize the surface of the GaN (0001)/sapphire substrate during the deposition at 950°C. Various characterization methods verify that the synthesized thin films are largely sp 2 bonded, macroscopically uniform, and electrically conducting. The carbon thin films possess optical transparencies comparable to that of exfoliated graphene. This paper offers a viable route toward the use of carbon-based materials for future transparent electrodes in III-nitride optoelectronics, such as GaN-based light emitting diodes and laser diodes. © 1988-2012 IEEE.
Resumo:
The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.
Resumo:
We present a study of magnetic anisotropy by using magneto-transport and direct magnetization measurements on tensile strained (Ga,Mn)As films. The magnetic easy axis of the films is in-plane at low temperatures, while the easy axis flips to out-of-plane when temperature is raised or hole concentration is increased. This easy axis reorientation is explained qualitatively in a simple physical picture by Zeners pd model. In addition, the magneto-crystalline anisotropic resistance was also investigated experimentally and theoretically based on the single magnetic domain model. The dependence of sheet resistance on the angle between the magnetic field and [1 0 0] direction was measured. It is found that the magnetization vector M in the single-domain state deviates from the external magnetic field H direction at low magnetic field, while for high magnetic field, M continuously moves following the field direction, which leads to different resistivity function behaviors.
Resumo:
A close relationship is found between the blue and yellow luminescence bands in n-type GaN films, which are grown without intentional acceptor doping. The intensity ratio of blue luminescence to yellow luminescence (I-BL/I-YL) decreases with the increase in edge dislocation densities as demonstrated by the (102) full width at half maximum of x-ray diffraction. In addition, the I-BL/I-YL ratio decreases with the increase in Si doping. It is suggested that the edge dislocation and Si impurity play important roles in linking the blue and yellow luminescence.
Resumo:
Mn ions have been incorporated into MOCVD grown Al1-x In (x) N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions one has Curie points at similar to 260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T (c) above room temperature is assumed to be associated to the layer having higher Mn concentration.
Resumo:
Dilute magnetic nonpolar GaN films with a Curie temperature above room temperature have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films and a subsequent rapid thermal annealing (RTA) process. The impact of the implantation and RTA on the structure and morphology of the nonpolar GaN films is studied in this paper. The scanning electron microscopy analysis shows that the RTA process can effectively recover the implantation-indUced damage to the surface morphology of the sample. The X-ray diffraction and micro-Raman scattering spectroscopy analyses show that the RTA process can just partially recover the implantation-induced crystal deterioration. Therefore, the quality of the Mn-implanted nonpolar GaN films should be improved further for the application in spintronic devices. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We studied the effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films deposited by radio frequency magnetron sputtering. It is found that the ZnO H film is highly transparent with the average transmittance of 92% in the visible range. Both carrier concentration and mobility are increased after hydrogen plasma treatment, correspondingly, the resistivity of the ZnO H films achieves the order of 10(-3) cm. We suggest that the incorporated hydrogen not only passivates most of the defects and/or acceptors present, but also introduces shallow donor states such as the V-O-H complex and the interstitial hydrogen H-i. Moreover, the annealing data indicate that H-i is unstable in ZnO, while the V-O-H complex remains stable on the whole at 400 degrees C, and the latter diffuses out when the annealing temperature increases to 500 degrees C. These results make ZnO H more attractive for future applications as transparent conducting electrodes.
Resumo:
A method for accurate determination of the curvature radius of semiconductor thin films is proposed. The curvature-induced broadening of the x-ray rocking curve (XRC) of a heteroepitaxially grown layer can be determined if the dependence of the full width at half maximum (FWHM) of XRC is measured as a function of the width of incident x-ray beam. It is found that the curvature radii of two GaN films grown on a sapphire wafer are different when they are grown under similar MOCVD conditions but have different values of layer thickness. At the same time, the dislocation-induced broadening of XRC and thus the dislocation density of the epitaxial film can be well calculated after the curvature correction.
Resumo:
In this work, the influences of CCl4 on the metalorganic chemical vapor deposition (MOCVD) growth of InN were studied for the first time. It was found that the addition of CCl4 can effectively suppress the formation of metal indium (In) droplets during InN growth, which was ascribed to the etching effect of Cl to In. However, with increasing of CCl4 flow, the InN growth rate decreased but the lateral growth of InN islands was enhanced. This provides a possibility of promoting islands coalescence toward a smooth surface of the InN film by MOCVD. The influence of addition of CCl4 on the electrical properties was also investigated.
Resumo:
We report the influence of growth parameters and post-growth annealing on the structural characterizations and magnetic properties of (Ga, Cr)As films. The crystalline quality and magnetic properties are sensitive to the growth conditions. The single-phase (Ga, Cr)As film with the Curie temperature of 10 K is synthesized at growth temperature T-s = 250 degrees C and with nominal Cr content x = 0.016. However, for the films with x > 0.02, the aggregation of Cr atoms is strongly enhanced as both T. and x increase, which not only brings strong compressive strain in the epilayer, but also roughens the surface. The origin of room-temperature ferromagnetism in (Ga, Cr)As films with nanoclusters is also discussed.
Resumo:
Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al-2(SO4)(3)]=0.0837 mol.L-1, [NaHCO3]=0.214 mol.L-1, 15 degreesC. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well. Excellent quality of Al2O3 films in this work is supported by electron dispersion spectroscopy, Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.
Crystallization of amorphous Si films by pulsed laser annealing and their structural characteristics
Resumo:
Nanocrystalline silicon (nc-Si) films were prepared by pulsed laser annealed crystallization of amorphous silicon (alpha-Si) films on SiO2-coated quartz or glass substrates. The effect of laser energy density on structural characteristics of nc-Si films was investigated. The Ni-induced crystallization of the a-Si films was also discussed. The surface morphology and microstructure of these films were characterized by scanning electron microscopy, high-resolution electron microscopy, atomic force microscopy and Raman scattering spectroscopy. The results show that not only can the alpha-Si films be crystallized by the laser annealing technique, but also the size of Si nanocrystallites can be controlled by varying the laser energy density. Their average size is about 4-6 nm. We present a surface tension and interface strain model used for describing the laser annealed crystallization of the alpha-Si films. The doping of Ni atoms may effectively reduce the threshold value of laser energy density to crystallize the alpha-Si films, and the flocculent-like Si nanostructures could be formed by Ni-induced crystallization of the alpha-Si films.
Resumo:
The composite films of the nanocrystalline GaAs1-xSbx-SiO2 have been successfully deposited on glass and GaSb substrates by radio frequency magnetron co-sputtering. The 10K photoluminescence (PL) properties of the nanocrystalline GaAs1-xSbx indicated that the PL peaks of the GaAs1-xSbx nanocrystals follow the quantum confinement model very closely. Optical transmittance spectra showed that there is a large blue shift of optical absorption edge in nanocrystalline GaAs1-xSbx-SiO2 composite films, as compared with that of the corresponding bulk semiconductor, which is due to the quantum confinement effect.
Resumo:
A new measurement method for GaN films and their Schottky contacts is reported in this paper. Instead of the fabrication of Ohmic contacts, this measurement is based on a special back-to-back Schottky diode that has a rectifying character. A mathematical model indicates that the electronic parameters of the materials can be deduced from the device's I-V data. In the experiment of an unintentionally doped n-type GaN layer with a residual carrier density 7 x 10(16) cm(-3), the analysis by the new method gives the layer's sheet resistance rho(s) = 497 Omega, the electron mobility mu(n) =, 613 cm(2) V-1 s(-1) and the ideality factor of the Ni/Au-GaN Schottky contacts n = 2.5, which are close to the data obtained by the traditional measurements: rho(s) = 505 Omega, mu(n) = 585 cm(2) V-1 s(-1) and n = 3.0. The method reported can be adopted not only for GaN films but also for other semiconductor materials, especially in the cases where Ohmic contacts of high quality are hard to make or their fabricating process affects the film's character.