991 resultados para ownership transition
Resumo:
The pocilloporin Rtms5 and an engineered variant Rtms5(H146S) undergo distinct color transitions (from blue to red to yellow to colorless) in a pH-dependent manner. pK(a) values of 4.1 and 3.2 were determined for the blue (absorption lambda(max), 590 nm) to yellow (absorption lambda(max), similar to 453 nm) transitions of Rtms5 and Rtms5H(146). The pK(a) for the blue-yellow transition of Rtms5H(146S) increased by 1.4 U in the presence of 0.1 M KI, whereas the pK(a) for the same transition of Rtms5 was relatively insensitive to added halides. To understand the structural basis for these observations, we have determined to 2.0 A resolution the crystal structure of a yellow form of Rtms5(H146S) at pH 3.5 in the presence of iodide. Iodide was found occupying a pocket in the structure with a pH of 3.5, forming van der Waals contacts with the tyrosyl moiety of the chromophore. Elsewhere, it was determined that this pocket is occupied by a water molecule in the Rtms5(H141S) structure (pH 8.0) and by the side chain of histidine 146 in the wild-type Rtms5 structure. Collectively, our data provide an explanation for the observed linkage between color transitions for Rtms5(H146S) and binding to halides.
Resumo:
Under the conditions of the rotating wave approximation (RWA), a transition strongly driven by a resonant oscillating field displays the well known symmetric Autler-Townes doublet. However, if the counter-rotating component, neglected in the RWA, is taken into account, the Bloch-Siegert shift gives rise to an Autler-Townes doublet of unequal intensity even in the case of a resonant driving field. This effect is investigated theoretically in a V-shaped three-level double-resonance configuration and the results are presented in this paper. An interesting observation is that the level of asymmetry not only depends on the driving-field intensity but also on the characteristics of the driven system including relaxation rates and equilibrium population distributions.
Resumo:
Epithelial to mesenchymal transition (EMT) is a process implicated in cancer progression in which the underlying cellular changes have been identified mainly using in vitro models. We determined the expression of some putative EMT biomarkers including E-cadherin, beta-catenin, zinc finger factor Snail (Snail), transforming growth factor beta 1 (TGF beta 1), TGF beta type II receptor (TBRII) and the HGF receptor (c-met) and their possible correlation to progression and overall survival in a series of breast ductal carcinoma in situ (DCIS) and invasive ductal carcinomas (IDC). Biomarkers were immunohistochemically determined in 55 IDC specimens from which 21 had lymph node metastases and in 95 DCIS specimens, 46 of these cases associated to invasive carcinoma, in a tissue microarray (TMA). Positive cytoplasmic staining of TGF beta 1 (78.2%), c-met (43.6%), Snail (34.5%), TBRII (100%), membranous E-cadherin (74.5%) and membranous/cytoplasmic beta-catenin (71%) were detected in the IDC samples. Metastatic lymph node samples displayed similar frequencies. A significant increase of c-met and TGF beta 1 positivity along DCIS to IDC progression was noted but only TGF beta 1 positivity was associated with presence of lymph node metastases and advanced stages in IDC. The evaluation of the other EMT markers in DCIS did not show differences in positivity rate as compared to invasive carcinomas. DCIS either pure or associated to IDC showed similar expression of the analyzed biomarkers. All the carcinomas exhibited positive expression of TBRII. Associations between the markers, determined by Spearman`s correlation coefficient, showed a significant association between TGF beta 1 and respectively E-cadherin, beta-catenin and cmet in DCIS cases, but in invasive carcinomas only cadherin and catenin were positively correlated. Kaplan-Meier survival curves revealed that none of the EMT biomarkers analyzed were correlated with survival, which was significantly determined only by clinical and hormone receptor parameters.
Resumo:
We suggest a new notion of behaviour preserving transition refinement based on partial order semantics. This notion is called transition refinement. We introduced transition refinement for elementary (low-level) Petri Nets earlier. For modelling and verifying complex distributed algorithms, high-level (Algebraic) Petri nets are usually used. In this paper, we define transition refinement for Algebraic Petri Nets. This notion is more powerful than transition refinement for elementary Petri nets because it corresponds to the simultaneous refinement of several transitions in an elementary Petri net. Transition refinement is particularly suitable for refinement steps that increase the degree of distribution of an algorithm, e.g. when synchronous communication is replaced by asynchronous message passing. We study how to prove that a replacement of a transition is a transition refinement.
Resumo:
Traditional Periodic Acid Schiff has been extensively used, coupled with immunohistochemistry for epithelia or mesenchymal cells, to highlight renal tubular basement membrane (TBM). We recently tried to perform such technique in a 5/6 nephrectomy model of progressive renal fibrosis to demonstrate TBM disruption as an evidence for epithelial-mesenchymal transdifferentiation. Despite excellent basement membrane staining with traditional fuchsin-Periodic Acid Schiff, the interface between epithelial and mesenchymal cells was frequently blurred when revealed with 3`3 diaminobenzidine tetrachloride-peroxidase. Also, it was inadequate when revealed with alkaline phosphatase-fast red. We devised a triple staining method with Periodic Acid-Thionin Schiff to highlight basement membrane in blue, after double immunostaining for epithelium and mesenchymal cells. Blue basement membrane rendered a brisk contrast and highlighted boundaries between epithelial-mesenchymal interfaces. This method was easy to perform and useful to demonstrate the TBM, yield a clear demonstration of the very focal TBM disruption found in this model of progressive renal fibrosis.
Resumo:
The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.