589 resultados para hyperbolic discounting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we generalize the concept of geometrically uniform codes, formerly employed in Euclidean spaces, to hyperbolic spaces. We also show a characterization of generalized coset codes through the concept of G-linear codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first paper in a two-part series devoted to studying the Hausdorff dimension of invariant sets of non-uniformly hyperbolic, non-conformal maps. Here we consider a general abstract model, that we call piecewise smooth maps with holes. We show that the Hausdorff dimension of the repeller is strictly less than the dimension of the ambient manifold. Our approach also provides information on escape rates and dynamical dimension of the repeller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the existence of compact attractor for the abstract semilinear evolution equation u = Au + f (t, u); the results are applied to damped partial differential equations of hyperbolic type. Our approach is a combination of Liapunov method with the theory of alpha-contractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the possibility that the universe's matter density is low (Ohm(0) < 1), cosmologies can be considered with the metric of Friedmann's open universe but with closed hyperbolic manifolds as the physical three-space. These models have nontrivial spatial topology, with the property of producing multiple images of cosmic sources. Here a fit is attempted of 10 of these models to the physical cold and hot spots found by Cayon & Smoot in the COBE/DMR maps. These spots are interpreted as early, distant images of much nearer sources of inhomogeneity. The source for one of the cold spots is seen as the seed of a known supercluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we introduce a mapping between the so-called deformed hyperbolic potentials, which are presenting a continuous interest in the last few years, and the corresponding nondeformed ones. As a consequence, we conclude that these deformed potentials do not pertain to a new class of exactly solvable potentials, but to the same one of the corresponding nondeformed ones. Notwithstanding, we can reinterpret this type of deformation as a kind of symmetry of the nondeformed potentials. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study non-hyperbolic repellers of diffeomorphisms derived from transitive Anosov diffeomorphisms with unstable dimension 2 through a Hopf bifurcation. Using some recent abstract results about non-uniformly expanding maps with holes, by ourselves and by Dysman, we show that the Hausdorff dimension and the limit capacity (box dimension) of the repeller are strictly less than the dimension of the ambient manifold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new sharp inequalities for the Maclaurin coefficients of an entire function from the Laguerre-Pólya class. They are obtained by a new technique involving the so-called very hyperbolic polynomials. The results may be considered as extensions of the classical Turán inequalities. © 2010 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we obtain a result on simultaneous linearization for a class of pairs of involutions whose composition is normally hyperbolic. This extends the corresponding result when the composition of the involutions is a hyperbolic germ of diffeomorphism. Inside the class of pairs with normally hyperbolic composition, we obtain a characterization theorem for the composition to be hyperbolic. In addition, related to the class of interest, we present the classification of pairs of linear involutions via linear conjugacy. © 2012 Elsevier Masson SAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this paper is to derive long time estimates of the energy for the higher order hyperbolic equations with time-dependent coefficients. in particular, we estimate the energy in the hyperbolic zone of the extended phase space by means of a function f (t) which depends on the principal part and on the coefficients of the terms of order m - 1. Then we look for sufficient conditions that guarantee the same energy estimate from above in all the extended phase space. We call this class of estimates hyperbolic-like since the energy behavior is deeply depending on the hyperbolic structure of the equation. In some cases, these estimates produce a dissipative effect on the energy. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study complete maximal spacelike hypersurfaces in anti-de Sitter space H-1(n+1) with either constant scalar curvature or constant non-zero Gauss-Kronecker curvature. We characterize the hyperbolic cylinders H-m(c(1)) x Hn-m(c(2)), 1 <= m <= n - 1, as the only such hypersurfaces with (n - 1) principal curvatures with the same sign everywhere. In particular we prove that a complete maximal spacelike hypersurface in H-1(5) with negative constant Gauss-Kronecker curvature is isometric to H-1(c(1)) x H-3(c(2)). (C) 2012 Elsevier Inc. All rights reserved.