Hausdorff dimension of non-hyperbolic repellers. I: Maps with holes
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/12/2001
|
Resumo |
This is the first paper in a two-part series devoted to studying the Hausdorff dimension of invariant sets of non-uniformly hyperbolic, non-conformal maps. Here we consider a general abstract model, that we call piecewise smooth maps with holes. We show that the Hausdorff dimension of the repeller is strictly less than the dimension of the ambient manifold. Our approach also provides information on escape rates and dynamical dimension of the repeller. |
Formato |
835-862 |
Identificador |
http://dx.doi.org/10.1023/A:1013501211027 Journal of Statistical Physics. New York: Kluwer Academic/plenum Publ, v. 105, n. 5-6, p. 835-862, 2001. 0022-4715 http://hdl.handle.net/11449/35905 10.1023/A:1013501211027 WOS:000172822600005 |
Idioma(s) |
eng |
Publicador |
Kluwer Academic/plenum Publ |
Relação |
Journal of Statistical Physics |
Direitos |
closedAccess |
Palavras-Chave | #Hausdorff dimension #non-uniform hyperbolicity #repeller #dynamical dimension |
Tipo |
info:eu-repo/semantics/article |