Hausdorff dimension of non-hyperbolic repellers. I: Maps with holes


Autoria(s): Horita, V; Viana, M.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/12/2001

Resumo

This is the first paper in a two-part series devoted to studying the Hausdorff dimension of invariant sets of non-uniformly hyperbolic, non-conformal maps. Here we consider a general abstract model, that we call piecewise smooth maps with holes. We show that the Hausdorff dimension of the repeller is strictly less than the dimension of the ambient manifold. Our approach also provides information on escape rates and dynamical dimension of the repeller.

Formato

835-862

Identificador

http://dx.doi.org/10.1023/A:1013501211027

Journal of Statistical Physics. New York: Kluwer Academic/plenum Publ, v. 105, n. 5-6, p. 835-862, 2001.

0022-4715

http://hdl.handle.net/11449/35905

10.1023/A:1013501211027

WOS:000172822600005

Idioma(s)

eng

Publicador

Kluwer Academic/plenum Publ

Relação

Journal of Statistical Physics

Direitos

closedAccess

Palavras-Chave #Hausdorff dimension #non-uniform hyperbolicity #repeller #dynamical dimension
Tipo

info:eu-repo/semantics/article