New characterizations for hyperbolic cylinders in anti-de Sitter spaces


Autoria(s): Chaves, R. M. B.; Sousa, L. A. M., Jr.; Valerio, B. C.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

01/11/2013

01/11/2013

02/08/2013

Resumo

In this paper we study complete maximal spacelike hypersurfaces in anti-de Sitter space H-1(n+1) with either constant scalar curvature or constant non-zero Gauss-Kronecker curvature. We characterize the hyperbolic cylinders H-m(c(1)) x Hn-m(c(2)), 1 <= m <= n - 1, as the only such hypersurfaces with (n - 1) principal curvatures with the same sign everywhere. In particular we prove that a complete maximal spacelike hypersurface in H-1(5) with negative constant Gauss-Kronecker curvature is isometric to H-1(c(1)) x H-3(c(2)). (C) 2012 Elsevier Inc. All rights reserved.

CNPq, Brazil

CNPq (Brazil)

Identificador

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, SAN DIEGO, v. 393, n. 1, supl. 1, Part 3, pp. 166-176, SEP 1, 2012

0022-247X

http://www.producao.usp.br/handle/BDPI/37451

10.1016/j.jmaa.2012.03.043

http://dx.doi.org/10.1016/j.jmaa.2012.03.043

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

SAN DIEGO

Relação

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #ANTI-DE SITTER SPACE #COMPLETE SPACELIKE HYPERSURFACES #GAUSS-KRONECKER CURVATURE #SCALAR CURVATURE #CONSTANT MEAN-CURVATURE #SCALAR CURVATURE #RIGIDITY THEOREMS #HYPERSURFACES #MATHEMATICS, APPLIED #MATHEMATICS
Tipo

article

original article

publishedVersion