New characterizations for hyperbolic cylinders in anti-de Sitter spaces
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
01/11/2013
01/11/2013
02/08/2013
|
Resumo |
In this paper we study complete maximal spacelike hypersurfaces in anti-de Sitter space H-1(n+1) with either constant scalar curvature or constant non-zero Gauss-Kronecker curvature. We characterize the hyperbolic cylinders H-m(c(1)) x Hn-m(c(2)), 1 <= m <= n - 1, as the only such hypersurfaces with (n - 1) principal curvatures with the same sign everywhere. In particular we prove that a complete maximal spacelike hypersurface in H-1(5) with negative constant Gauss-Kronecker curvature is isometric to H-1(c(1)) x H-3(c(2)). (C) 2012 Elsevier Inc. All rights reserved. CNPq, Brazil CNPq (Brazil) |
Identificador |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, SAN DIEGO, v. 393, n. 1, supl. 1, Part 3, pp. 166-176, SEP 1, 2012 0022-247X http://www.producao.usp.br/handle/BDPI/37451 10.1016/j.jmaa.2012.03.043 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO |
Relação |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #ANTI-DE SITTER SPACE #COMPLETE SPACELIKE HYPERSURFACES #GAUSS-KRONECKER CURVATURE #SCALAR CURVATURE #CONSTANT MEAN-CURVATURE #SCALAR CURVATURE #RIGIDITY THEOREMS #HYPERSURFACES #MATHEMATICS, APPLIED #MATHEMATICS |
Tipo |
article original article publishedVersion |