906 resultados para autonomous vehicles


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents a framework to an Industrial Engineering and Management Science course from School of Management and Industrial Studies using Autonomous Ground Vehicles (AGV) to supply materials to a production line as an experimental setup for the students to acquire knowledge in the production robotics area. The students must be capable to understand and put into good use several concepts that will be of utmost importance in their professional life such as critical decisions regarding the study, development and implementation of a production line. The main focus is a production line using AGVs, where the students are required to address several topics such as: sensors actuators, controllers and an high level management and optimization software. The presented framework brings to the robotics teaching community methodologies that allow students from different backgrounds, that normally don’t experiment with the robotics concepts in practice due to the big gap between theory and practice, to go straight to ”making” robotics. Our aim was to suppress the minimum start point level thus allowing any student to fully experience robotics with little background knowledge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a set of field tests for detection of human in the water with an unmanned surface vehicle using infrared and color cameras. These experiments aimed to contribute in the development of victim target tracking and obstacle avoidance for unmanned surface vehicles operating in marine search and rescue missions. This research is integrated in the work conducted in the European FP7 research project Icarus aiming to develop robotic tools for large scale rescue operations. The tests consisted in the use of the ROAZ unmanned surface vehicle equipped with a precision GPS system for localization and both visible spectrum and IR cameras to detect the target. In the experimental setup, the test human target was deployed in the water wearing a life vest and a diver suit (thus having lower temperature signature in the body except hands and head) and was equipped with a GPS logger. Multiple target approaches were performed in order to test the system with different sun incidence relative angles. The experimental setup, detection method and preliminary results from the field trials performed in the summer of 2013 in Sesimbra, Portugal and in La Spezia, Italy are also presented in this work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the design and implementation of a mission control system (MCS) for an autonomous underwater vehicle (AUV) based on Petri nets. In the proposed approach the Petri nets are used to specify as well as to execute the desired autonomous vehicle mission. The mission is easily described using an imperative programming language called mission control language (MCL) that formally describes the mission execution thread. A mission control language compiler (MCL-C) able to automatically translate the MCL into a Petri net is described and a real-time Petri net player that allows to execute the resulting Petri net onboard an AUV are also presented

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone’s video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present paper describes a system for the construction of visual maps ("mosaics") and motion estimation for a set of AUVs (Autonomous Underwater Vehicles). Robots are equipped with down-looking camera which is used to estimate their motion with respect to the seafloor and built an online mosaic. As the mosaic increases in size, a systematic bias is introduced in its alignment, resulting in an erroneous output. The theoretical concepts associated with the use of an Augmented State Kalman Filter (ASKF) were applied to optimally estimate both visual map and the fleet position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintenance is a time consuming and expensive task for any golf course or driving range manager. For a golf course the primary tasks are grass mowing and maintenance (fertilizer and herbicide spreading), while for a driving range mowing, maintenance and ball collection are required. All these tasks require an operator to drive a vehicle along paths which are generally predefined. This paper presents some preliminary in-field tsting results for an automated tractor vehicle performing golf ball collection on an actual driving range, and mowing on difficult unstructured terrain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe a low-cost flight control system for a small (60 class) helicopter which is part of a larger project to develop an autonomous flying vehicle. Our approach differs from that of others in not using an expensive inertial/GPS sensing system. The primary sensors for vehicle stabilization are a low-cost inertial sensor and a pair of CMOS cameras. We describe the architecture of our flight control system, the inertial and visual sensing subsystems and present some flight control results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous underwater gliders are robust and widely-used ocean sampling platforms that are characterized by their endurance, and are one of the best approaches to gather subsurface data at the appropriate spatial resolution to advance our knowledge of the ocean environment. Gliders generally do not employ sophisticated sensors for underwater localization, but instead dead-reckon between set waypoints. Thus, these vehicles are subject to large positional errors between prescribed and actual surfacing locations. Here, we investigate the implementation of a large-scale, regional ocean model into the trajectory design for autonomous gliders to improve their navigational accuracy. We compute the dead-reckoning error for our Slocum gliders, and compare this to the average positional error recorded from multiple deployments conducted over the past year. We then compare trajectory plans computed on-board the vehicle during recent deployments to our prediction-based trajectory plans for 140 surfacing occurrences.