926 resultados para Zeros of Entire Functions


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we define the composite function for a special class of generalized mappings and we study the invertibility for a certain class of generalized functions with real values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove that the zeros of the polynomials P.. (a) of degree m, defined by Boros and Moll via[GRAPHICS]approach the lemmiscate {zeta epsilon C: \zeta(2) - 1\ = Hzeta < 0}, as m --> infinity. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss an old theorem of Obrechkoff and some of its applications. Some curious historical facts around this theorem are presented. We make an attempt to look at some known results on connection coefficients, zeros and Wronskians of orthogonal polynomials from the perspective of Obrechkoff's theorem. Necessary conditions for the positivity of the connection coefficients of two families of orthogonal polynomials are provided. Inequalities between the kth zero of an orthogonal polynomial p(n)(x) and the largest (smallest) zero of another orthogonal polynomial q(n)(x) are given in terms of the signs of the connection coefficients of the families {p(n)(x)} and {q(n)(x)}, An inequality between the largest zeros of the Jacobi polynomials P-n((a,b)) (x) and P-n((alpha,beta)) (x) is also established. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, sharp upper limit for the zeros of the ultraspherical polynomials are obtained via a result of Obrechkoff and certain explicit connection coefficients for these polynomials. As a consequence, sharp bounds for the zeros of the Hermite polynomials are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known and easy to see that the zeros of both the associated polynomial and the derivative of an orthogonal polynomial p(n)(x) interlace with the zeros of p(n)(x) itself. The natural question of how these zeros interlace is under discussion. We give a sufficient condition for the mutual location of kth, 1 less than or equal to k less than or equal to n - 1, zeros of the associated polynomial and the derivative of an orthogonal polynomial in terms of inequalities for the corresponding Cotes numbers. Applications to the zeros of the associated polynomials and the derivatives of the classical orthogonal polynomials are provided. Various inequalities for zeros of higher order associated polynomials and higher order derivatives of orthogonal polynomials are proved. The results involve both classical and discrete orthogonal polynomials, where, in the discrete case, the differential operator is substituted by the difference operator. (C) 2001 IMACS. Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)