On the zeros of polynomials: An extension of the Enestrom-Kakeya theorem
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
15/01/2012
|
Resumo |
This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier B.V. All rights reserved. |
Formato |
1151-1161 |
Identificador |
http://dx.doi.org/10.1016/j.jmaa.2011.07.037 Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 385, n. 2, p. 1151-1161, 2012. 0022-247X http://hdl.handle.net/11449/7114 10.1016/j.jmaa.2011.07.037 WOS:000295062600044 |
Idioma(s) |
eng |
Publicador |
Academic Press Inc. Elsevier B.V. |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
closedAccess |
Palavras-Chave | #Enestrom-Kakeya theorem #Zeros of perturbed polynomials #Stability of Brown (K, L) methods #Jeltsch conjecture |
Tipo |
info:eu-repo/semantics/article |