On the zeros of polynomials: An extension of the Enestrom-Kakeya theorem


Autoria(s): Botta, Vanessa; Meneguette, Messias; Cuminato, Jose A.; McKee, Sean
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

15/01/2012

Resumo

This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier B.V. All rights reserved.

Formato

1151-1161

Identificador

http://dx.doi.org/10.1016/j.jmaa.2011.07.037

Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 385, n. 2, p. 1151-1161, 2012.

0022-247X

http://hdl.handle.net/11449/7114

10.1016/j.jmaa.2011.07.037

WOS:000295062600044

Idioma(s)

eng

Publicador

Academic Press Inc. Elsevier B.V.

Relação

Journal of Mathematical Analysis and Applications

Direitos

closedAccess

Palavras-Chave #Enestrom-Kakeya theorem #Zeros of perturbed polynomials #Stability of Brown (K, L) methods #Jeltsch conjecture
Tipo

info:eu-repo/semantics/article