731 resultados para Transformations (Mathematics)
Resumo:
The primary purpose of this research was to examine individual differences in learning from worked examples. By integrating cognitive style theory and cognitive load theory, it was hypothesised that an interaction existed between individual cognitive style and the structure and presentation of worked examples in their effect upon subsequent student problem solving. In particular, it was hypothesised that Analytic-Verbalisers, Analytic-Imagers, and Wholist-lmagers would perform better on a posttest after learning from structured-pictorial worked examples than after learning from unstructured worked examples. For Analytic-Verbalisers it was reasoned that the cognitive effort required to impose structure on unstructured worked examples would hinder learning. Alternatively, it was expected that Wholist-Verbalisers would display superior performances after learning from unstructured worked examples than after learning from structured-pictorial worked examples. The images of the structured-pictorial format, incongruent with the Wholist-Verbaliser style, would be expected to split attention between the text and the diagrams. The information contained in the images would also be a source of redundancy and not easily ignored in the integrated structured-pictorial format. Despite a number of authors having emphasised the need to include individual differences as a fundamental component of problem solving within domainspecific subjects such as mathematics, few studies have attempted to investigate a relationship between mathematical or science instructional method, cognitive style, and problem solving. Cognitive style theory proposes that the structure and presentation of learning material is likely to affect each of the four cognitive styles differently. No study could be found which has used Riding's (1997) model of cognitive style as a framework for examining the interaction between the structural presentation of worked examples and an individual's cognitive style. 269 Year 12 Mathematics B students from five urban and rural secondary schools in Queensland, Australia participated in the main study. A factorial (three treatments by four cognitive styles) between-subjects multivariate analysis of variance indicated a statistically significant interaction. As the difficulty of the posttest components increased, the empirical evidence supporting the research hypotheses became more pronounced. The rigour of the study's theoretical framework was further tested by the construction of a measure of instructional efficiency, based on an index of cognitive load, and the construction of a measure of problem-solving efficiency, based on problem-solving time. The consistent empirical evidence within this study that learning from worked examples is affected by an interaction of cognitive style and the structure and presentation of the worked examples emphasises the need to consider individual differences among senior secondary mathematics students to enhance educational opportunities. Implications for teaching and learning are discussed and recommendations for further research are outlined.
Resumo:
This study, entitled "Surviving" Adolescence: Apocalyptic and post-apocalyptic transformations in young adult fiction‖, analyses how discourses surrounding the apocalyptic and post-apocalyptic are represented in selected young adult fiction published between 1997 and 2009. The term ―apocalypse‖ is used by current theorists to refer to an uncovering or disclosure (most often a truth), and ―post-apocalypse‖ means to be after a disclosure, after a revelation, or after catastrophe. This study offers a double reading of apocalyptic and post-apocalyptic discourses, and the dialectical tensions that are inherent in, and arise from, these discourses. Drawing on the current scholarship of children‘s and young adult literature this thesis uses post-structural theoretical perspectives to develop a framework and methodology for conducting a close textual analysis of exclusion, ‗un‘differentiation, prophecy, and simulacra of death. The combined theoretical perspectives and methodology offer new contributions to young adult fiction scholarship. This thesis finds that rather than conceiving adolescence as the endurance of a passing phase of a young person‘s life, there is a new trend emerging in young adult fiction that treats adolescence as a space of transformation essential to the survival of the young adult, and his/her community.
Resumo:
This paper provides an interim report of a large empirical evaluation study in progress. An intervention was implemented to evaluate the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on Kindergarten students’ mathematical development. Four large schools (two from Sydney and two from Brisbane), 16 teachers and their 316 students participated in the first phase of a 2-year longitudinal study. Eight of 16 classes implemented the PASMAP program over three school terms. This paper provides an overview of key aspects of the intervention, and preliminary analysis of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas.
Resumo:
In the global knowledge economy, knowledge-intensive industries and knowledge workers are extensively seen as the primary factors to improve the welfare and competitiveness of cities. To attract and retain such industries and workers, cities produce knowledge-based urban development strategies, and therefore such strategising has become an important development mechanism for cities and their economies. The paper discusses the critical connections between knowledge city foundations and integrated knowledge-based urban development mechanisms in both the local and regional level. In particular, the paper investigates Brisbane’s knowledge-based urban development strategies that support gentrification, attraction, and retention of investment and talent. Furthermore, the paper develops a knowledge-based urban development assessment framework to provide a clearer understanding of the local and regional policy frameworks, and relevant applications of Brisbane’s knowledge-based urban development experience, in becoming a prosperous knowledge city. The paper, with its knowledge-based urban development assessment framework, scrutinises Brisbane’s four development domains in detail: economy; society; institutional; built and natural environments. As part of the discussion of the case study findings, the paper describes the global orientation of Brisbane within the frame of regional and local level knowledge-based urban development strategies performing well. Although several good practices from Brisbane have already been internationally acknowledged, the research reveals that Brisbane is still in the early stages of its knowledge-based urban development implementation. Consequently, the development of a monitoring system for all knowledge-based urban development at all levels is highly crucial in accurately measuring the success and failure of specific knowledge-based urban development policies, and Brisbane’s progress towards a knowledge city transformation.
Resumo:
This paper reports on a mathematics education research project centred on teachers’ pedagogical practices and capacity to assess Indigenous Australian students in a culture-fair manner. The project has been funded by the Australian Research Council Linkage program and is being conducted in seven Catholic and Independent primary schools in north Queensland. Our Industry Partners are Catholic Education and the Association of Independent Schools, Queensland. The study aims to provide greater understanding about how to build more equitable assessment practices to address the issue of underperforming Aboriginal and Torres Strait Islander (ATSI) students in regional and remote Australia. The goal is to identify ways forward by attending to culture-fair assessment practice. The research is exploring the attitudes, beliefs and responses of Indigenous students to assessment in the context of mathematics learning with particular focus on teacher knowledge in these educational settings in relation to the design of assessment tasks that are authentic and engaging for these students in an accountability context. This approach highlights how teachers need to distinguish the ‘funds of knowledge’ (González, Moll, Floyd Tenery, Rivera, Rendón, Gonzales & Amanti, 2008) that Indigenous students draw on and how teachers need to be culturally responsive in their pedagogy to open up curriculum and assessment practice to allow for different ways of knowing and being
Resumo:
Engaging and motivating students in mathematics lessons can be challenging. The traditional approach of chalk and talk can sometimes be problematic. The new generation of educational robotics has the potential to not only motivate students but also enable teachers to demonstrate concepts in mathematics by connecting concepts with the real world. Robotics hardware and the software are becoming increasing more user-friendly and as a consequence they can be blended in with classroom activities with greater ease. Using robotics in suitably designed activities promotes a constructivist learning environment and enables students to engage in higher order thinking through hands-on problem solving. Teamwork and collaborative learning are also enhanced through the use of this technology. This paper discusses a model for teaching concepts in mathematics in middle year classrooms. It will also highlight some of the benefits and challenges of using robotics in the learning environment.
Resumo:
We present the findings of a study into the implementation of explicitly criterion- referenced assessment in undergraduate courses in mathematics. We discuss students' concepts of criterion referencing and also the various interpretations that this concept has among mathematics educators. Our primary goal was to move towards a classification of criterion referencing models in quantitative courses. A secondary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. The data and feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, it did not alter the way the actually approached the assessment activity.
Resumo:
Direct instruction, an approach that is becoming familiar to Queensland schools that have high Aboriginal and Torres Strait Islander populations, has been gaining substantial political and popular support in the United States of America [USA], England and Australia. Recent examples include the No Child Left Behind policy in the USA, the British National Numeracy Strategy and in Australia, Effective Third Wave Intervention Strategies. Direct instruction, stems directly from the model created in the 1960s under a Project Follow Through grant. It has been defined as a comprehensive system of education involving all aspects of instruction. Now in its third decade of influencing curriculum, instruction and research, direct instruction is also into its third decade of controversy because of its focus on explicit and highly directed instruction for learning. Characteristics of direct instruction are critiqued and discussed to identify implications for teaching and learning for Indigenous students.
Resumo:
In this paper, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society (Kirschenman and Brenner 2010)d. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of mathematics engineering curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour, and the effectiveness of problem solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.