742 resultados para Textile fabrics, Mohammedan.
Resumo:
This study reports the synthesis of extremely high aspect ratios (>3000) organic semiconductor nanowires of Ag–tetracyanoquinodimethane (AgTCNQ) on the surface of a flexible Ag fabric for the first time. These one-dimensional (1D) hybrid Ag/AgTCNQ nanostructures are attained by a facile, solution-based spontaneous reaction involving immersion of Ag fabrics in an acetonitrile solution of TCNQ. Further, it is discovered that these AgTCNQ nanowires show outstanding antibacterial performance against both Gram negative and Gram positive bacteria, which outperforms that of pristine Ag. The outcomes of this study also reflect upon a fundamentally important aspect that the antimicrobial performance of Ag-based nanomaterials may not necessarily be solely due to the amount of Ag+ ions leached from these nanomaterials, but that the nanomaterial itself may also play a direct role in the antimicrobial action. Notably, the applications of metal-organic semiconducting charge transfer complexes of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) have been predominantly restricted to electronic applications, except from our recent reports on their (photo)catalytic potential and the current case on antimicrobial prospects. This report on growth of these metal-TCNQ complexes on a fabric not only widens the window of these interesting materials for new biological applications, it also opens the possibilities for developing large-area flexible electronic devices by growing a range of metal-organic semiconducting materials directly on a fabric surface.
Resumo:
Embedded many-core architectures contain dozens to hundreds of CPU cores that are connected via a highly scalable NoC interconnect. Our Multiprocessor-System-on-Chip CoreVAMPSoC combines the advantages of tightly coupled bus-based communication with the scalability of NoC approaches by adding a CPU cluster as an additional level of hierarchy. In this work, we analyze different cluster interconnect implementations with 8 to 32 CPUs and compare them in terms of resource requirements and performance to hierarchical NoCs approaches. Using 28nm FD-SOI technology the area requirement for 32 CPUs and AXI crossbar is 5.59mm2 including 23.61% for the interconnect at a clock frequency of 830 MHz. In comparison, a hierarchical MPSoC with 4 CPU cluster and 8 CPUs in each cluster requires only 4.83mm2 including 11.61% for the interconnect. To evaluate the performance, we use a compiler for streaming applications to map programs to the different MPSoC configurations. We use this approach for a design-space exploration to find the most efficient architecture and partitioning for an application.
Resumo:
Supply chain outsourcing has posed problems for conventional labour regulation, which focuses on employers contracting directly with workers, particularly employees. These difficulties have been exacerbated by the traditional trifurcated approach to regulation of pay and conditions, work health and safety and workers’ compensation. This paper analyses the parallel interaction of two legal developments within the Australian textile, clothing and footwear industry. The first is mandatory contractual tracking mechanisms within state and federal labour laws and the second is the duties imposed by the harmonised Work Health and Safety Acts. Their combined effect has created an innovative, fully enforceable and integrated regulatory framework for the textile, clothing and footwear industry and, it is argued, other supply chains in different industry contexts. This paper highlights how regulatory solutions can address adverse issues for workers at the bottom of contractual networks, such as fissured workplaces and capital fragmentation, by enabling regulators to harness the commercial power of business controllers at the apex to ensure compliance throughout the entire chain.
Resumo:
Textile waste is a significant contributor to landfill yet the majority of textiles can be recycled, allowing for the energy and fibre to be reclaimed. This chapter examines the open-loop and closed loop recycling of textile products with particular reference to the fashion and apparel context. It describes the fibres used within apparel, the current mechanical and chemical methods for textile recycling, LCA findings for each method, and applications within apparel for each. Barriers for more effective recycling include ease of integration into existing textile and apparel design methods as well as coordinated collection of post-consumer waste. The chapter concludes with a discussion of innovations that point to future trends in both open-loop and closed-loop recycling within the apparel industry.
Resumo:
Modern ryijys, fabric by the yard and handicrafts. Finnish textile art and modernizing applied art during the inter-war years Textile art was in the 1920s and 1930s in the front rank of Finnish applied art and design. Modern ryijys, tapestries and fabrics by the yard by contemporary textile artists were on show in Finland and abroad. Textile art had also become interesting commercially, especially in interior textiles of modern homes. The research uses sources of the Ornamo Association of Decorative Artists, for example the Ornamo year books published from 1927, the Finnish Society of Crafts and Design and the country s only school of applied arts, the Central School of Arts and Crafts and the Museum of Applied Arts maintained by the society and also the national specialist organisation the Friends of Finnish Handicraft. It also refers to the magazines Käsiteollisuus and Kotiliesi. The art historical dissertation studies the renaissance of weaving art of the inter-war years in Finland. It problematizes the relation of the succesfull and appreciated textile art to the concept of breakthrough of Modernism (Functionalism). With the material from textile artists activities it questions the prevailing idea of slow modernization of Finnish applied art and design and challenges the polarization of craft and industry in the discourses of Modernisms of design. The public discussions about modernization of design and applied art where textile art and especially the ryijy got sometimes into difficult positions are interpreted as power struggles. After taking independence in 1917 the Finnish tradition of ryijy rugs was set as a symbol of the original culture of the young nation. The research studies the development of the so called art ryijy and the notions and meanings of hand weaving in the national context and also in relation to contemporary events in international applied art and design. It highlights the continuity of hand crafted production of textiles and the strong position of textile artists working in this field. The research opens new perspectives to Finnish textile artists by showing their activities as entrepreneurs in their own weaving studios or design studios and referring to their many relations and functions as pattern designers and educators in the growing handicraft industries.
Resumo:
The aim of the study was to analyze and facilitate collaborative design in a virtual learning environment (VLE). Discussions of virtual design in design education have typically focused on technological or communication issues, not on pedagogical issues. Yet in order to facilitate collaborative design, it is also necessary to address the pedagogical issues related to the virtual design process. In this study, the progressive inquiry model of collaborative designing was used to give a structural level of facilitation to students working in the VLE. According to this model, all aspects of inquiry, such as creating the design context, constructing a design idea, evaluating the idea, and searching for new information, can be shared in a design community. The study consists of three design projects: 1) designing clothes for premature babies, 2) designing conference bags for an international conference, and 3) designing tactile books for visually impaired children. These design projects constituted a continuum of design experiments, each of which highlighted certain perspectives on collaborative designing. The design experiments were organized so that the participants worked in design teams, both face-to-face and virtually. The first design experiment focused on peer collaboration among textile teacher students in the VLE. The second design experiment took into consideration end-users needs by using a participatory design approach. The third design experiment intensified computer-supported collaboration between students and domain experts. The virtual learning environments, in these design experiments, were designed to support knowledge-building pedagogy and progressive inquiry learning. These environments enabled a detailed recording of all computer-mediated interactions and data related to virtual designing. The data analysis was based on qualitative content analysis of design statements in the VLE. This study indicated four crucial issues concerning collaborative design in the VLE in craft and design education. Firstly, using the collaborative design process in craft and design education gives rise to special challenges of building learning communities, creating appropriate design tasks for them, and providing tools for collaborative activities. Secondly, the progressive inquiry model of collaborative designing can be used as a scaffold support for design thinking and for reflection on the design process. Thirdly, participation and distributed expertise can be facilitated by considering the key stakeholders who are related to the design task or design context, and getting them to participate in virtual designing. Fourthly, in the collaborative design process, it is important that team members create and improve visual and technical ideas together, not just agree or disagree about proposed ideas. Therefore, viewing the VLE as a medium for collaborative construction of the design objects appears crucial in order to understand and facilitate the complex processes in collaborative designing.
Resumo:
Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.
Resumo:
Description of the work Shrinking Violets is comprised of two half scale garments in laser cut silk organza, developed with a knotting device to allow for disassembly and reassembly. The first is a jacket in layered red organza including black storm flap details. The second is a vest in jade organza with circles of pink organza attached through a pattern of knots. Research Background This practice-led fashion design research sits within the field of Design for Sustainability (DfS) in fashion that seeks to mitigate the environmental and ethical impacts of fashion consumption and production. The research explores new systems of garment construction for DfS, and examines how these systems may involve ‘designing’ new user interactions with the garments. The garments’ construction system allows them to be disassembled and recycled or reassembled by users to form a new garment. Conventional garment design follows a set process of cutting and construction, with pattern pieces permanently machine-stitched together. Garments typically contain multiple fibre types; for example a jacket may be constructed from a shell of wool/polyester, an acetate lining, fusible interlinings, and plastic buttons. These complex inputs mean that textile recycling is highly labour intensive, first to separate the garment pieces and second to sort the multiple fibre types. This difficulty results in poor quality ‘shoddy’ comprised of many fibre types and unsuitable for new apparel, or in large quantities of recyclable textile waste sent to landfill (Hawley 2011). Design-led approaches that consider the garment’s end of life in the design process are a way of addressing this problem. In Gulich’s (2006) analysis, use of single materials is the most effective way to ensure ease of recycling, with multiple materials that can be detached next in effectiveness. Given the low rate of technological innovation in most apparel manufacturing (Ruiz 2011), a challenge for effective recycling is how to develop new manufacturing methods that allow for garments to be more easily disassembled at end-of-life. Research Contribution This project addresses the research question: How can design for disassembly be considered within the fashion design process? I have employed a practice-led methodology in which my design process leads the research, making use of methods of fashion design practice including garment and construction research, fabric and colour research, textile experimentation, drape, patternmaking, and illustration as well as more recent methods such as laser cutting. Interrogating the traditional approaches to garment construction is necessarily a technical process; however fashion design is as much about the aesthetic and desirability of a garment as it is about the garment’s pragmatics or utility. This requires a balance between the technical demands of designing for disassembly with the aesthetic demands of fashion. This led to the selection of luxurious, semi-transparent fabrics in bold floral colours that could be layered to create multiple visual effects, as well as the experimentation with laser cutting for new forms of finishing and fastening the fabrics together. Shrinking Violets makes two contributions to new knowledge in the area of design for sustainability within fashion. The first is in the technical development of apparel modularity through the system of laser cut holes and knots that also become a patterning device. The second contribution lies in the design of a system for users to engage with the garment through its ability to be easily reconstructed into a new form. Research Significance Shrinking Violets was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design. References Gulich, B. (2006). Designing textile products that are easy to recycle. In Y. Wang (Ed.), Recycling in Textiles (pp. 25-37). London: Woodhead. Hawley, J. M. (2011). Textile recycling options: exploring what could be. In A. Gwilt & T. Rissanen (Eds.), Shaping Sustainable Fashion: Changing the way we make and use clothes (pp. 143 - 155). London: Earthscan. Ruiz, B. (2014). Global Apparel Manufacturing. Retrieved 10 August 2014, from http://clients1.ibisworld.com/reports/gl/industry/default.aspx?entid=470
Resumo:
Sensing and photocatalysis of textile industry effluents such as dyes using mesoporous anatase titania nanowires are discussed here.Spectroscopic investigations show that the titania nanowires preferentially sense cationic (e.g. Methylene Blue, Rhodamine B) over anionic (e.g. Orange G, Remazol Brilliant Blue R) dyes. The adsorbed dye concentration on titania nanowires increased with increase in nanowire dimensions and dye solution pH. Electrochemical sensing directly corroborated spectroscopic findings. Electrochemical detection sensitivity for Methylene Blue increased by more than two times in magnitude with tripling of nanowire average length. Photodegradation of Methylene Blue using titania nanowires is also more efficient than the commercial P25-TiO2 nanopowders. Keeping illumination protocol and observation times constant, the Methylene Blue concentration in solution decreased by only 50% in case of P25-TiO2 nanoparticles compared to a 100% decrease for titania nanowires. Photodegradation was also found to be function of exposure times and dye solution pH.Excellent sensing ability and photocatalytic activity of the titania nanowires is attributed to increased effective reaction area of the controlled nanostructured morphology. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The anisotropy of magnetic susceptibility (AMS) study was performed on soft sediment samples from a trenched fault zone across the Himalayan frontal thrust (HFT), western Himalaya. AMS orientation of K-min axes in the trench sediments is consistent with lateral shortening revealed by geometry of deformed regional structures and recent earthquakes. Well-defined vertical magnetic foliation parallel to the flexure cleavage in which a vertical magnetic lineation is developed, high anisotropy, and triaxial ellipsoids suggest large overprinting of earth-quake- related fabrics. The AMS data suggest a gradual variation from layer parallel shortening (LPS) at a distance from the fault trace to a simple shear fabric close to the fault trace. An abrupt change in the shortening direction (K-min) from NE-SW to E-W suggests a juxtaposition of pre-existing layer parallel shortening fabric, and bending-related flexure associated with an earthquake. Hence the orientation pattern of magnetic susceptibility axes helps in identifying co-seismic structures in Late Holocene surface sediments.
Resumo:
The concept of sustainable fashion covers not only the ecological and ethical matters in fashion and textile industries but also the cultural and social affairs, which are equally intertwined in this complex network. Sustainable fashion does not have one explicit or well-established definition; however, many researchers have discussed it from different perspectives. This study provides an overview of the principals, practices, possibilities, and challenges concerning sustainable fashion. It focuses particularly on the practical questions a designer faces. The aim of this study was to answer the following questions: What kind of outlooks and practices are included in sustainable fashion? How could the principles of sustainable fashion be integrated into designing and making clothes? The qualitative study was carried out by using the Grounded Theory method. Data consisted mainly of academic literature and communication with designers who practice sustainable fashion. In addition to these, several websites and journalistic articles were used. The data was analyzed by identifying and categorizing relevant concepts using the constant comparative method, i.e. examining the internal consistency of each category. The study established a core category, around which all other categories are integrated. The emerged concepts were organized into a model that pieces together different ideas about sustainable fashion, namely, when the principles of sustainable development are applied to fashion practices. The category named Considered Take and Return is the core of the model. It consists of various design philosophies that form the basis of design practice, and thus it relates to all other categories. It is framed by the category of Attachment and Appreciation, which reflects the importance of sentiment in design practice, for example the significance of aesthetics. The categories especially linked to fashion are Materials, Treatments of Fabrics and Production Methods. The categories closely connected with sustainable development are Saving Resources, Societal Implications, and Information Transparency. While the model depicts separate categories, the different segments are in close interaction. The objective of sustainable fashion is holistic and requires all of its sections to be taken into account.
Resumo:
From a find to an ancient costume - reconstruction of archaeological textiles Costume tells who we are. It warms and protects us, but also tells about our identity: gender, age, family, social group, work, religion and ethnicity. Textile fabrication, use and trade have been an important part of human civilization for more than 10 000 years. There are plenty of archaeological textile findings, but they are small, fragmentary and their interpretation requires special skills. Finnish textile findings from the younger Iron Age have already been studied for more than hundred years. They have also been used as a base for several reconstructions called muinaispuku , ancient costume. Thesis surveys the ancient costume reconstruction done in Finland and discusses the objectives of the reconstruction projects. The earlier reconstruction projects are seen as a part of the national project of constructing a glorious past for Finnish nationality, and the part women took in this project. Many earlier reconstructions are designed to be festive costumes for wealthy ladies. In the 1980s and 1990s many new ancient costume reconstructions were made, differing from their predecessors at the pattern of the skirt. They were also done following the principles of making a scientific reconstruction more closely. At the same time historical re-enactment and living history as a hobby have raised in popularity, and the use of ancient costumes is widening from festive occasions to re-enactment purposes. A hypothesis of the textile craft methods used in younger Iron Age Finland is introduced. Archaeological findings from Finland and neighboring countries, ethnological knowledge of textile crafts and experimental archaeology have been used as a basis for this proposition. The yarn was spinned with a spindle, the fabrics woven on a warp-weighted loom and dyed with natural colors. Bronze spiral applications and complicated tablet-woven bands have possibly been done by specialist craftswomen or -men. The knowledge of the techniques and results of experimenting and experimental archaeology gives a possibility to review the success of existing ancient costume reconstructions as scientific reconstructions. Only one costume reconstruction project, the Kaarina costume fabricated in Kurala Kylämäki museum, has been done using as authentic methods as possible. The use of ancient craft methods is time-consuming and expensive. This fact can be seen as one research result itself for it demonstrates how valuable the ancient textiles have been also in their time of use. In the costume reconstruction work, the skill of a craftswoman and her knowledge of ancient working methods is strongly underlined. Textile research is seen as a process, where examination of original textiles and reconstruction experiments discuss with each other. Reconstruction projects can give a lot both to the research of Finnish younger Iron Age and the popularization of archaeological knowledge. The reconstruction is never finished, and also the earlier reconstructions should be reviewed in the light of new findings.
Resumo:
This study presents 100% degradation of H-acid under optimized conditions using Alcaligenes latus, isolated from textile industrial effluent. Gene/s responsible for H-acid degradation was/were found to be present on plasmid DNA. Addition of bipyridyl to incubated medium resulted in accumulation of terminal aromatic compound, suggesting that catechol may be terminal aromatic compound in degradation pathway of H-acid by A. latus. SDS-PAGE of cell free extracts showed two prominent bands close to molecular weight of catechol 1,2-dioxygenase.