980 resultados para Scattering effects
Resumo:
We performed Raman scattering investigations on low-temperature-grown (LTG) films of GaAs that had been lifted off the GaAs substrate. The Raman measurements unambiguously show the effects of excess arsenic on phonon scattering from LTG films of GaAs. The larger downwards shift of the LO phonon frequency for unannealed free-standing films is explained by invoking the elimination of mismatch strain. The Raman signal due to precipitates of elemental arsenic in the annealed GaAs : As films is determined. It is confirmed that the arsenic clusters formed by rapid thermal annealing are mainly amorphous, giving rise a broad Raman peak in the range 180-260 cm(-1).
Resumo:
Raman scattering studies were reported of In1-x-yGaxAlyAs/InP lattice matched quaternary alloys. The quaternary alloys a.ere grown on (100) oriented InP substrates by MBE method. The composition and intensity dependence of optical phonon mode frequencies show that the quaternary alloys exhibit three-mode behavior, i.e. InAs-like, GaAs-like and AlAs-like modes. Polarization analysis of the Raman spectra shows that the LO phonon modes are Raman active in the depolarized configuration and Raman inactive in the polarized configuration. TO phonon modes were also observed due to disorder effects, resulting in the asymmetrical shapes of the Raman peaks of the optical phonons.
Resumo:
Wurtzite ZnO has many potential applications in optoelectronic devices, and the hydrogenated ZnO exhibits excellent photoelectronic properties compared to undoped ZnO; however, the structure of H-related defects is still unclear. In this article, the effects of hydrogen-plasma treatment and subsequent annealing on the electrical and optical properties of ZnO films were investigated by a combination of Hall measurement, Raman scattering, and photoluminescence. It is found that two types of hydrogen-related defects, namely, the interstitial hydrogen located at the bond-centered (H-BC) and the hydrogen trapped at a O vacancy (H-O), are responsible for the n-type background conductivity of ZnO films. Besides introducing two hydrogen-related donor states, the incorporated hydrogen passivates defects at grain boundaries. With increasing annealing temperatures, the unstable H-BC atoms gradually diffuse out of the ZnO films and part of them are converted into H-O, which gives rise to two anomalous Raman peaks at 275 and 510 cm(-1). These results help to clarify the relationship between the hydrogen-related defects in ZnO described in various studies and the free carriers that are produced by the introduction of hydrogen.
Resumo:
Raman spectra of (GaAs)n1/(AlAs)n2 ultrathin-layer superlattices were measured at room temperature and under off-resonance conditions. The experimental results show that there are two effects in ultrathin-layer superlattices: the confinement effect of LO phonons and the alloy effect. It is found that the relative intensity of the disorder-activated TO mode can give a measure of the alloy effect. The Raman spectra of one-monolayer superlattices measured in various scattering configurations are very similar to those of the Al0.5Ga0.5As alloy, and thus the alloy effect is prominent. However, in the case of monolayer number n greater-than-or-equal-to 4, the confined effect is prominent, while the alloy effect is only shown as an interface effect.
Resumo:
A new measurement of proton resonance scattering on Be-7 was performed tip to the center-of-mass energy of 6.7 MeV using the low-energy RI beam facility CRIB (CNS Radioactive Ion Beam separator) at the Center for Nuclear Study of the University of Tokyo. The excitation function of Be-7 + p elastic scattering above 3.5 MeV was measured Successfully for the first time, providing important information about the resonance structure of the B-8 nucleus. The resonances are related to the reaction rate of Be-7(p.gamma)B-8. which is the key reaction in solar B-8 neutrino production. Evidence for the presence of two negative parity states is presented. One of them is a 2(-) state observed as a broad s-wave resonance, the existence of which had been questionable. Its possible effects on the determination of the astrophysical S-factor of Be-7(p.gamma)B-8 at solar energy are discussed. The other state had not been observed in previous measurements, and its spin and parity were determined as 1(-). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We examine the electric and magnetic strange form factors of the nucleon in the pseudoscalar-vector SU(3) Skyrme model, with special emphasis on the effects of isospin symmetry breaking (ISB). It is found that ISB has a nontrivial effect on the strange vector form factors of the nucleon and its contribution to the nucleon strangeness is significantly larger than one might naively expect. Our calculations and discussions may be of some significance for the experimental extraction of the authentic strangeness.
Resumo:
Based on the isospin-dependent transport model IBUU and on the scaling model according to nucleon effective mass, effects of elastic and inelastic NN scattering cross-sections on pi(-)/pi(+) in the neutron-rich reaction Ca-48 + Ca-48 at a beam energy of 400MeV/nucleon are studied. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Delta(1232), pi(-) and pi(+) productions as well as the value of pi(-)/pi(+).
Resumo:
A smart biodegradable cationic polymer (CBA-PEI) based on the disulfide bond-containing cross-linker cystamine bisacrylamide (CBA) and low molecular weight branched polyethylenimine (1800-Da, PEI1800) was successfully synthesized by Michael addition reaction in our recent study. Furthermore, a series of copolymers (CBA-PEI-PEG) with different PEGylation degree were obtained by the mPEG-SPA (5000-Da) reacting with CBA-PEI at various weight ratios directly. The molecular structures of the resulting polymers CBA-PEI and CBA-PEI-PEG were evaluated by nuclear magnetic resonance spectroscopy (H-1-NMR) and capillary viscosity measurements, all of which had successfully verified formation of the copolymers. The polymer/DNA complexes based on CBA-PEI and CBA-PEI-PEG were measured by dynamic light scattering and gel retardation assay. The results showed that the particle size and zeta potential of complexes were reduced with increasing amount of PEG grafting, even no particle formation. The particle size of CBA-PEI/DNA complexes was in range of 103.1 to 129.1 nm, and the zeta potential was in range of 14.2 to 24.3 mV above the 2:1 weight ratio. In the same measure condition, the particle size of CBA-PEI-PEG complexes was reduced to a range of 32.2 to 55 nm, and the zeta potential was in range of 9.3 to 13.8 mV at the 2:1 weight ratio.
Resumo:
The calculations presented in this paper are based on the Sanchez-Lacombe (SL) lattice fluid theory. The interaction energy parameter, g*(12)/k, required in this approach was obtained by fitting the cloud points of polystyrene (PS) /methyleyclohexane (MCH) polymer solutions under pressure. The SL lattice fluid theory was used to calculate the spinodals, the binodals, and the Flory-Huggins (FH) interaction parameter of the solutions. The calculated results show that the SL lattice fluid theory can describe the dependences of thermodynamics of PS/MCH solutions on temperature and pressure very well. However, the calculated enthalpy and the excess volume changes indicate that the Clausius-Clapeyron equation cannot be suitable to describe pressure effect on PS/MCH solutions. Further analysis on the thermodynamics of this system under pressure shows that the role of entropy is more important than the excess volume in the present case.
Resumo:
Effects of chain flexibility on the conformation of homopolymers in good solvents have been investigated by Monte Carlo simulation. Bond angle constraint coupled with persistence length of polymer chains has been introduced in the modified eight-site bond fluctuation simulation model. The study about the effects of chain flexibility on polymer sizes reveals that the orientation of polymer chains under confinement is driven by the loss of conformation entropy. The conformation of polymer chains undergoing a gradual change from spherical iso-diametric ellipsoid to rodlike iso-diametric ellipsoid with the decrease of polymer chain flexibility in a wide region has been clearly illustrated from several aspects. Furthermore, a comparison of the freely jointed chain (FJC) model and the wormlike chain (WLC) model has also been made to describe the polymer sizes in terms of chain flexibility and quasi-quantitative boundary toward the suitability of the models.
Resumo:
The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.
Resumo:
With the aid of Sanchez-Lacombe lattice fluid theory (SLLFT), the phase diagrams were calculated for the system cyclohexane (CH)/polystyrene (PS) with different molecular weights at different pressures. The experimental data is in reasonable agreement with SLLFT calculations. The total Gibbs interaction energy, g*(12) for different molecular weights PS at different pressures was expressed, by means of a universal relationship, as g(12)* =f(12)* + (P - P-0) nu*(12) demixing curves were then calculated at fixed (near critical) compositions of CH and PS systems for different molecular weights. The pressures of optimum miscibility obtained from the Gibbs interaction energy are close to those measured by Wolf and coworkers. Furthermore, a reasonable explanation was given for the earlier observation of Saeki et al., i.e., the phase separation temperatures of the present system increase with the increase of pressure for the low molecular weight of the polymer whereas they decrease for the higher molecular weight polymers. The effects of molecular weight, pressure, temperature and composition on the Flory Huggins interaction parameter can be described by a general equation resulting from fitting the interaction parameters by means of Sanchez-Lacombe lattice fluid theory.
Resumo:
The glass transition temperature (T-g) of mixtures of polystyrene (PS) with different molecular weight and of blends of poly(2,6-dimethyl-p-phenylene oxide) (PPO) and polystyrene with different molecular weight (DMWPS) was studied by a DSC method. For the whole range of composition, the curves of T-g vs composition obtained by experiment were compared with predictions from the Fox, Gordon-Taylor, Couchman and Lu-Weiss, equations. It was found that the experimental results were not in agreement with those from the Fox, Gordon-TayIor and Couchman equations for the binary mixtures of DMWPS, where the interaction parameter chi was approximately zero. However, for the blends PPO/DMWPS (chi < 0), with an increase of molecular weight of PS, it was shown that the experimental results fitted well with those obtained from the Couchman, Gordon-Taylor and Fox equations, respectively. Furthermore, the Gordon-Taylor equation was nearly identical to the Lu-Weiss equation when \chi\ was not very large. Further, the dependence of the change of heat capacity associated with the glass transition (Delta C-p) on the molecular weight of PS was investigated and an empirical equation was presented. (C) 1997 Elsevier Science Ltd.
Resumo:
In this paper microcrystalline structures of polyamide-1010 (PA1010) mixed with neodymium oxide (Nd2O3) were studied by Wide Angle X-ray Diffraction (WAXD) and Small Angle X-ray Scattering (SAXS). Crystallization behavior was investigated by DSC. The transition and relaxation of macromolecules in the crystalline phase were explored by Differential Scanning Calorimetry (DSC). It was revealed that neodymium oxide plays an important role in PA1010 crystallization as a heterogeneous nucleating agent. It can improve the crystallization rate, reduce crystallite size and introduce crystal imperfections. The microcrystalline structure was imposed by the addition of Nd2O3 However, the heterogeneous nucleation effect obviously does not exert its influence on the transition and relaxation of macromolecules in the crystalline phase.
Resumo:
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.