944 resultados para POLY(LACTIC ACID-CO-LYSINE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polylactide (PLA) was melt blended with a biodegradable hyperbranched poly(ester amide) (HBP) to enhance its flexibility and toughness without sacrificing comprehensive performance. The advantage of using HBP was due to its unique spherical shape, low melt viscosity, and abundant functional end groups together with its easy access. Rheological measurement showed that blending PLA with as little as 2.5% HBP resulted in a 40% reduction of melt viscosity. The glass transition temperature (T-g) of PLA in the blends decreased slightly with the increase of HBP content, indicating partial miscibility which resulted from intermolecular interactions via H-bonding. The H-bonding involving CO of PLA with OH and NH of HBP was evidenced by FTIR analysis for the first time. The HBP component, as a heterogeneous nucleating agent, accelerated the crystallization rate of PLA. Remarkably, with the increase of HBP content, the elongation at break of PLA blends dramatically increased without severe loss in tensile strength, even the tensile strength increased within 10% content of HBP. The stress-strain curves and the SEM photos of impact-fractured surface showed the material changed from brittle to ductile failure with the addition of HBP. Reasonable interfacial adhesion via H-bonding and finely dispersed particulate structure of HBP in PLA were proposed to be responsible for the improved mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel biodegradable aliphatic poly(L-lactide-co-carbonate) bearing pendant acetylene groups was successfully prepared by ring-opening copolymerization of L-lactide (LA) with 5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one (PC) in the presence of benzyl alcohol as initiator with ZnEt2 as catalyst in bulk at 100 degrees C and subsequently used for grafting 2-azidoethyl beta-D-glucopyranoside and 2-azidoethyl beta-lactoside by the typical "click reaction," that is Cu(I)-catalyzed cycloaddition of azide and alkyne. The density of acetylene groups in the copolymer can be tailored by the molar ratio of PC to LA during the copolymerization. The aliphatic copolymers grafted with sugars showed low cytotoxicity to L929 cells, improved hydrophilic properties and specific recognition and binding ability with lectins, that is Concanavalin A (Con A) and Ricinus communis agglutinin (RCA). Therefore, this kind of sugar-grafted copolymer could be a good candidate in variety of biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones released from intestinal enteroendocrine (EE) cells and have well-established glucose-lowering actions. Lactic acid bacteria (LAB) colonise the human intestine, but it is unknown whether LAB and EE cells interact. Acute co-culture of LAB with EE cells showed that certain LAB strains elicit GLP-1 and GIP secretion (13-194-fold) and upregulate their gene expression. LAB-induced incretin hormone secretion did not appear to involve nutrient mechanisms, nor was there any evidence of cytolysis. Instead PCR array studies implicated signalling agents of the toll-like receptor system, e.g. adaptor protein MyD88 was decreased 23-fold and cell surface antigen CD14 was increased 17-fold. Mechanistic studies found that blockade of MyD88 triggered significant GLP-1 secretion. Furthermore, blocking of CD14 completely attenuated LAB-induced secretion. A recent clinical trial clearly shows that LAB have potential for alleviating type 2 diabetes, and further characterisation of this bioactivity is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from sucrose and propionic acid by Burkholderia sacchari IPT 189 was studied using a two-stage bioreactor process. In the first stage, this bacterium was cultivated in a balanced culture medium until sucrose exhaustion. In the second stage, a solution containing sucrose and propionic acid as carbon source was fed to the bioreactor at various sucrose/propionic acid (s/p) ratios at a constant specific flow rate. Copolymers with 3HV content ranging from 40 down to 6.5 (mol%) were obtained with 3HV yield from propionic acid (Y-3HV/prop) increasing from 1.10 to 1.34 g g(-1). Copolymer productivity of 1 g l(-1) h(-1) was obtained with polymer biomass content rising up to 60% by increasing a specific flow rate at a constant s/p ratio. Increasing values of 3HV content were obtained by varying the s/p ratios. A simulation of production costs considering Y-3HV/prop obtained in the present work indicated that a reduction of up to 73% can be reached, approximating US$ 1.00 per kg which is closer to the value to produce P3HB from sucrose (US$ 0.75 per kg).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), (1)H and (13)C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, (13)C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the objective of obtaining slow-acting isoniazid derivatives, of potential use as chemoprophylactics or chemotherapeutics in tuberculosis, the micelle-forming copolymer of poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid was synthesized. The derivative obtained was found to be active in Mycobacterium Il(tuberculosis culture, with a minimal inhibitory concentration (MIC) 5.6 times lower than that of the tuberculostatic drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductile properties. ATBC showed higher plasticizer efficiency than PEG directly related to the similarity solubility parameters between ATBC and both biopolymers. Moreover, ATBC was more efficiently retained to the polymer matrix during processing than PEG. PLA–PHB–ATBC blends were homogeneous and transparent blends that showed promising performance for the preparation of films by a ready industrial process technology for food packaging applications, showing slightly amber color, improved elongation at break, enhanced oxygen barrier and decreased wettability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have demonstrated that polymeric biomaterials have the potential to support osteoblast growth and development for bone tissue repair. Poly( beta- hydroxybutyrate- co- beta- hydroxyvalerate) ( PHBV), a bioabsorbable, biocompatible polyhydroxy acid polymer, is an excellent candidate that, as yet, has not been extensively investigated for this purpose. As such, we examined the attachment characteristics, self- renewal capacity, and osteogenic potential of osteoblast- like cells ( MC3T3- E1 S14) when cultured on PHBV films compared with tissue culture polystyrene ( TCP). Cells were assayed over 2 weeks and examined for changes in morphology, attachment, number and proliferation status, alkaline phosphatase ( ALP) activity, calcium accumulation, nodule formation, and the expression of osteogenic genes. We found that these spindle- shaped MC3T3- E1 S14 cells made cell - cell and cell - substrate contact. Time- dependent cell attachment was shown to be accelerated on PHBV compared with collagen and laminin, but delayed compared with TCP and fibronectin. Cell number and the expression of ALP, osteopontin, and pro- collagen alpha 1( I) mRNA were comparable for cells grown on PHBV and TCP, with all these markers increasing over time. This demonstrates the ability of PHBV to support osteoblast cell function. However, a lag was observed for cells on PHBV in comparison with those on TCP for proliferation, ALP activity, and cbfa- 1 mRNA expression. In addition, we observed a reduction in total calcium accumulation, nodule formation, and osteocalcin mRNA expression. It is possible that this cellular response is a consequence of the contrasting surface properties of PHBV and TCP. The PHBV substrate used was rougher and more hydrophobic than TCP. Although further substrate analysis is required, we conclude that this polymer is a suitable candidate for the continued development as a biomaterial for bone tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amine functionalities were introduced onto the surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by applying radio frequency ammonia plasma treatment and wet ethylenediamine treatment. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS) for chemical composition and Raman microspectroscopy for the spatial distribution of the chemical moieties. The relative amount of amine functionalities introduced onto the PHBV surface was determined by exposing the treated films to the vapor of trifluoromethylbenzaldehyde (TFBA) prior to XPS analysis. The highest amount of amino groups on the PHBV surface could be introduced by use of ammonia plasma at short treatment times of 5 and 10 s, but no effect of plasma power within the range of 2.5-20 W was observed. Ethylenediamine treatment yielded fewer surface amino groups, and in addition an increase in crystallinity as well as degradation of PHBV was evident from Fourier transform infrared spectroscopy. Raman maps showed that the coverage of amino groups on the PHBV surfaces was patchy with large areas having no amine functionalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of series of poly(acrylic acids) (PAA) of differing end-groups and molecular weights prepared using atom transfer radical polymerization were used as inhibitors for the crystallization of calcium oxalate at 23 and 80°C. As measured by turbidimetry and conductivity and as expected from previous reports, all PAA series were most effective for inhibition of crystallization at molecular weights of 1500–4000. However, the extent of inhibition was in general strongly dependent on the hydrophobicity and molecular weight of the end-group. These results may be explicable in terms of adsorption/desorption of PAA to growth sites on crystallites. The overall effectiveness of the series didn't follow a simple trend with end-group hydrophobicity, suggesting self-assembly behavior or a balance between adsorption and desorption rates to crystallite surfaces may be critical in the mechanism of inhibition of calcium oxalate crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of series of poly(acrylic acids) (PAA) of differing end-groups and molecular mass were used to study the inhibition of calcium oxalate crystallization. The effects of the end-group on crystal speciation and morphology were significant and dramatic, with hexyl-isobutyrate end groups giving preferential formation of calcium oxalate dihydrate (COD) rather than the more stable calcium oxalate monohydrate (COM), while both more hydrophobic end-groups and less-hydrophobic end groups led predominantly to formation of the least thermodynamically stable form of calcium oxalate, calcium oxalate trihydrate. Conversely, molecular mass had little impact on calcium oxalate speciation or crystal morphology. It is probable that the observed effects are related to the rate of desorption of the PAA moiety from the crystal (lite) surfaces and that the results point to a major role for end-group as well as molecular mass in controlling desorption rate.