952 resultados para P-TYPE GAN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p-type carrier scattering rate due to alloy disorder in Si1-xGex alloys is obtained from first principles. The required alloy scattering matrix elements are calculated from the energy splitting of the valence bands, which arise when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Alloy scattering within the valence bands is found to be characterized by a single scattering parameter. The hole mobility is calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation. The results are in good agreement with experiments on bulk, unstrained alloys..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages of including a small number of p-type gaussian functions in a floating spherical gaussian orbital calculation are pointed out and illustrated by calculations on molecules which previously have proved to be troublesome. These include molecules such as F2 with multiple lone pairs and C2H2 with multiple bonds. A feature of the results is the excellent correlation between the orbital energies and those of a double zeta calculation reported by Snyder and Basch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Codoping of p-type GaN nanowires with Mg and oxygen was investigated using first-principles calculations. The Mg becomes a deep acceptor in GaN nanowires with high ionization energy due to the quantum confinement. The ionization energy of Mg doped GaN nanowires containing passivated Mg-O complex decreases with increasing the diameter, and reduces to 300 meV as the diameter of the GaN nanowire is larger than 2.01 nm, which indicates that Mg-O codoping is suitable for achieving p-type GaN nanowires with larger diameters. The codoping method to reduce the ionization energy can be effectively used in other semiconductor nanostructures. (C) 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new ultraviolet photodetector of employing p menus type GaN (p(-)-GaN) as the active layer is proposed. It is easy to obtain the p(-)-GaN layer with low carrier concentration. As a result, the depletion region can be increased and the quantum efficiency can be improved. The influence of some structure parameters on the performance of the new device is investigated. Through the simulation calculation, it is found that the quantum efficiency increases with the decrease of the barrier height between the metal electrode and the p(-)-GaN layer, and it is also found that the quantum efficiency can be improved by reducing the thickness of the p(-)-GaN layer. To fabricate the new photodetector with high performance, we should employ thin p(-)-GaN layer as the active layer and reduce the Schottky barrier height.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-doped p-InGaN layers with In composition of about 10% are grown by metalorganic chemical vapor deposition (MOCVD). The effect of the annealing temperature on the p-type behavior of Mg-doped InGaN is studied. It is found that the hole concentration in p-InGaN increases with a rising annealing temperature in the range of 600 850 C, while the hole mobility remains nearly unchanged until the annealing temperature increases up to 750 C, after which it decreases. On the basis of conductive p-type InGaN growth, the p-In0.1Ga0.9N/i-In0.1Ga0.9N/n-GaN junction structure is grown and fabricated into photodiodes. The spectral responsivity of the InGaN/GaN p-i-n photodiodes shows that the peak responsivity at zero bias is in the wavelength range 350-400 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical and structural properties of Mg delta-doped GaN epilayers grown by MOCVD were investigated. Compared to uniform Mg-doping GaN layers, it has been shown that the delta-doping (delta-doping) process could suppress the dislocation density and enhance the p-type performance. The influence of pre-purge step on the structural properties of GaN was also investigated. The hole concentration of p-GaN decreases when using a pre-purge step. These results can be explained convincingly using a simple model of impurity incorporation under Ga-free growth condition. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric (TE) conversion of waste heat into useful electricity demands optimized thermal and electrical transport in the leg material over a wide temperature range. In order to gain a reasonably high figure of merit (ZT) as well as high thermal electric conversion efficiency, various conditions of the starting material were studied: industrially produced skutterudite powders of p-type DDy(Fe1-xCox)(4)Sb-12 (DD: didymium) and n-type (Mm, Sm)(y)Co4Sb12 (Mm: mischmetal) were used. After a rather fast reaction-melting technique, the bulk was crushed and sieved with various strainers in order to obtain particles below the respective mesh sizes, followed by ball-milling under three different conditions. The dependence of the TE properties (after hot pressing) on the micro/nanosized particles, grains and crystallites was investigated. Optimized conditions resulted in an increase of ZT for bulk material to current record-high values: from ZT similar to 1.1 to ZT similar to 1.3 at 775 K for p-type and from ZT similar to 1.0 to ZT similar to 1.6 at 800 K for n-type, resulting in respective efficiencies (300-850 K) of eta > 13% and eta similar to 16%. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diluted-magnetic nonpolar GaN:Cu films have been fabricated by implanting Cu ions into p-type nonpolar a-plane (1120) GaN films with a subsequent thermal annealing process. The impact of the implantation dose on the structural. morphological and magnetic characteristics of the samples have been investigated by means of high-resolution X-ray diffraction (HRXRD). atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). The XRD and AFM analyses show that the structural and morphological characteristics of samples deteriorated with the increase of implantation dose. According to the SQUID analysis. obvious room-temperature ferromagnetic properties of samples were detected. Moreover, the saturation magnetization per Cu atom decreased as the implantation dose increased. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-doped AlGaN and GaN/AlGaN superlattice are grown by metalorganic chemical vapour deposition (MOCVD). Rapid thermal annealing (RTA) treatments are carried out on the samples. Hall and high resolution x-ray diffraction measurements are used to characterize the electrical and structural prosperities of the as-grown and annealed samples, respectively. The results of hall measurements show that after annealing, the Mg-doped AlGaN sample can not obtain the distinct hole concentration and can acquire a resistivity of 1.4 x 10(3) Omega cm. However, with the same annealing treatment, the GaN/AlGaN superlattice sample has a hole concentration of 1.7 x 10(17) cm(-3) and of Mg acceptors, which leads to higher hole concentration and lower p-type resistivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For enhancing the output efficiency of GaN light-emitting diode(LED), we calculated the band structure of photonic crystal(PhC), and designed and fabricated several novel GaN LEDs with photonic crystal on Indium-Tin-Oxide(ITO), which as p-type transparent contact of GaN LED. In this fabricating process, we developed conventional techniques in order that these methods can be easily applied to industrial volume-production. And we have done some preliminary experiments and obtained some results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaN/GaN multiple quantum well-based light-emitting diode (LED) nanopillar arrays were fabricated using Ni self-assembled nanodots as etching mask. The Ni nanodots were fabricated with a density of 6 x 10(8)-1.5 x 10(9) cm(-2) and a dimension of 100-250 nm with varying Ni thickness and annealing duration time. Then LED nanopillar arrays with diameter of approximately 250 nm and height of 700 nm were fabricated by inductively coupled plasma etching. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence (PL) intensity is achieved for the nanopillars and a blueshift as well as a decrease in full width at half maximum of the PL peak are also observed. The method of additional chemical etching was used to remove the etching-induced damage. Then nano-LED devices were further completed using a planarization approach to deposit p-type electrode on the tips of nanopillars. The current-voltage curves of both nanopillars and planar LED devices are measured for comparison.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently found evidence of new donor acceptor pair (DAP) luminescence in molecular beam epitaxy (MBE) grown films. A variety of nominally undoped samples have been studied by photoluminescence (PL) over a temperature range of 5-300 K. The samples show intensive luminescence al energies of 3.404-3.413 eV varying with different sample at 5 K, as well as a fairly strong (DX)-X-0 line at low temperature. We attribute the Line at 3.404-3.413 eV to DAP recombination which is over 0.1 eV different from the well known DAP caused by ME-doping in GaN. The DAP line shows fine structure. it even predominates in one particular sample. The peak position shifts to higher energy with temperature increasing from 5 up to 70 K, and as the excitation laser intensity increases. The data are consistent with DAP luminescence involving an acceptor level of about 90 meV (presumably carbon) above the valence band edge in GaN. It is much shallower than the acceptor level of 250 meV produced by the p-type dopant Mg which is commonly used at present. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low resistivity of p-type Mg-doped AlGaN/GaN superlattices (SLs) is demonstrated. The resistivity of the SLs is less than 0.6 Omega .cm. and the measured hole concentration is higher than 1x10(18)cm(-3). The resistivity of SLs is much lower, and the hole concentration of SLs is much higher, than that of bulk GaN and AlGaN, The electrical properties of the SLs are less sensitive than the conventional bulk lavers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC