992 resultados para Impurities in semiconductors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss an open photoacoustic cell study on sulfer-doped n-type InP wafer. The thermal diffusivity of the sample is evaluated from the phase data associated with the photoacoustic signal as a function of the modulation frequency under heat transmission configuration. Analysis is made on the basis of the Rosencwaig-Gersho theory and the results are compared with those from earlier reported photoacoustic studies of semiconductors. Our investigation clearly indicates that the instantaneous thermalization process is the major heat diffusion mechanism responsible for the photoacoustic signal generation in an InP sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An open cell photoacoustic configuration has been employed to evaluate the thermal diffusivity of pure InP as well as InP doped with sulphur and iron. Chopped optical radiation at 488 nm from an Ar-ion laser has been used to excite photoacoustic signals which been detected by a sensitive electret microphone. Thermal diffusivity value have been calculated from phase versus chopping frequency plots. Doped sample are found to show a reduced value for thermal diffusivity in comparison with intrinsically pure sample. The results have been interpreted in terms of the mechanisms of heat generation and transmission in semiconductors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho’s theory of the PA effect. The amplitude of the PA signal gives information about various heat generation mechanisms in semiconductors. The experimental data obtained from the measurement of the PA signal as a function of modulation frequency in a heat transmission configuration were fitted with the phase of PA signal obtained from the theoretical model evaluated by considering four parameters—viz., thermal diffusivity, diffusion coefficient, nonradiative recombination time, and surface recombination velocity—as adjustable parameters. It is seen from the analysis that the photoacoustic technique is sensitive to the changes in the surface states depend on the doping concentration. The study demonstrates the effectiveness of the photoacoustic technique as a noninvasive and nondestructive method to measure and evaluate the thermal and transport properties of epitaxial layers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An open-cell configuration of the photoacoustic (PA) technique is employed to determine the thermal and transport properties of intrinsic Si and Si doped with B (p-type) and P (n-type). The experimentally obtained phase of the PA signal under heat transmission configuration is fitted to that of theoretical model by taking thermal and transport properties, namely, thermal diffusivity, diffusion coefficient, and surface recombination velocity, as adjustable parameters. It is seen from the analysis that doping and also the nature of dopant have a strong influence on the thermal and transport properties of semiconductors. The results are interpreted in terms of the carrier-assisted and phonon-assisted heat transfer mechanisms in semiconductors as well as the various scattering processes occurring in the propagation of heat carriers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chaotic dynamics of directly modulated semiconductor lasers have been studied extensively over the last two decades because of their application in secure optical communication. However, chaos is generally suppressed in such systems when the nonlinear gain reduction factor is above 0.01 which is very much smaller than the reported values in semiconductors like InGaAsP. In this paper we show that by giving an optoelectronic feedback with appropriate delay one can increase the range of the values of the gain reduction factor for which chaos can be observed. Numerical studies show that negative feedback is more efficient in producing chaotic dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Thesis consist of the study of the electrical properties of antimony trisulphide films and the electrical behaviour of different metal contacts to antimony trisulphide films. Since the thermal evapouration of the compound antimony trisulphide as such mayresult in nonstoichiometric compound films , sb2s3 films in the present work were mostly prepared by the three temperature method ,keeping the substrate at different temperature ranging from 3031 to 4231 and evapourating antimony and sulphur simultaneously from separate sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most evident and actual concern, not only in the scientific means, but also of the public knowledge in general, is the lack problem of the potable water, that come increasing more each time, motivated mainly for the po llution of the sources, the bad use of the water and the increase of the population. In such a way, the necessity of looking for new water sources and the development of techniques to use sources minus explored is becoming even more important and urgent. T he rainwater comes being used since a long time like a supplying source, but, due the few knowledge of its characteristics, the generated preconception and the discrimination around its consumption and to the bad use of the technique of collection and stor age, it comes being little used, wasting consequently a significant parcel of this source. Trying to develop the knowing of some characteristics of the rainwater, the present work looks for to define the curve of variation of the quality of the rainwater i n three points with distinct characteristics of the city of Natal -RN, in the course of the precipitation, in some situations of time and space. For describe the curve of variation of the water s quality, some variables must be analyzed, and to be identifie d when they modify themselves in the endurance of rain, showing in which moment the purification of the water is more or less quickly. The pH, the Turbidity and the Electric Conductivity can be related with a big part of the physicist -chemistries variables found in the water and, like its analyses don't spend any material, they have easy access and measurement. The present work analyzes the curves of decline of these three variables, in three points with distinct characteristics in the city of Natal -RN, being these points: one next to the sea, another one in region with great buildings concentration and the last point in a less polluted area. For the studied region, it was during the five first millimeters of rain that occurs the biggest reduction of the exi sting impurities in the atmosphere, mainly between the first and the second millimeter, and after the five first millimeters the values of the variables stabilize. With exception of the University Campus, where initially the rainwater already has very good quality, the values of Turbidity and Electric Conductivity suffer a brusque reduction after the first millimeter of rain

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flexible piezo- and pyroelectric composite was made in the thin film form by spin coating. Lead Zirconate Titanate (PZT) ceramic powder was dispersed in a castor oil-based polyurethane (PU) matrix, providing a composite with 0-3 connectivity. The dielectric data, measured over a wide range of frequency (10(-5) Hz to 105 Hz), shows a loss peak around 100 Hz related with impurities in the polymer matrix. There is also an evidence of a peak in the range 10(-4) Hz, possibly originating from the glass transition temperature T of the polymer. The pyroelectric coefficient at 34 K is 7.0x10(-5) C(.)m(-2.)K(-1) which is higher than that of P-PVDF (1X10(-5) C(.)m(-2.)K(-1)).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents theoretical evaluation and experimental results to the proposed bridgeless interleaved boost PFC (power factor correction) converter. The application of bridgeless technique causes reduction of conduction losses, while the interleaving technique of the converter cells allows division of the current stress in semiconductor devices and reduction of weight and volume of the input EMI filter. In each cell of the converter, the inductor current operates in discontinuous conduction mode (DCM), which eliminates turn-on switching losses and the effects of reverse recovery in semiconductors, increasing the efficiency of the converter. The experimental results show the power factor of 0.96 for employed voltage ratio and an efficiency of 95.2 % for nominal load conditions. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.