895 resultados para INDIUM NITRIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quest for novel two-dimensional materials has led to the discovery of hybrids where graphene and hexagonal boron nitride (h-BN) occur as phase-separated domains. Using first-principles calculations, we study the energetics and electronic and magnetic properties of such hybrids in detail. The formation energy of quantum dot inclusions (consisting of n carbon atoms) varies as 1/root n, owing to the interface. The electronic gap between the occupied and unoccupied energy levels of quantum dots is also inversely proportional to the length scale, 1/root n-a feature of confined Dirac fermions. For zigzag nanoroads, a combination of the intrinsic electric field caused by the polarity of the h-BN matrix and spin polarization at the edges results in half-metallicity; a band gap opens up under the externally applied ``compensating'' electric field. For armchair nanoroads, the electron confinement opens the gap, different among three subfamilies due to different bond length relaxations at the interfaces, and decreasing with the width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles of titania were obtained by the controlled hydrolysis of Ti(i-OC3H7)(4) in the reverse micelles of dodecylamine derived from dodecylamine-isopropanol-water solution (water/oil microemulsion). The mesolamellar phase based on titanium nitride (TiN) was obtained by first decomposing TiN atleast partially using the 1:1 solution of acid mixture (HF and HNO3 in the ratio of 9:1) in water and then templating onto the cationic surfactant namely, cetyltrimethylammaniumbromide (abbreviated as CTAB) at 80 degrees C. The synthesis of mesolamellar phase based on TiN involves the charge matched templating approach following the counter-ion mediated pathway. The samples thus obtained were characterized by small angle x-ray diffraction using Cuk(a) radiation, scanning electron microscopy and transmission electron microscopy, which indicated some satisfactory results. (C) 1999 Acta Metallurgica Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple methods of preparing boron nitride nanotubes and nanowires have been investigated. The methods involve heating boric acid with activated carbon, multi-walled carbon nanotubes, catalytic iron particles or a mixture of activated carbon and iron particles, in the presence of NH3. While with activated carbon, boron nitride nanowires constitute the primary product, high yields of clean boron nitride nanotubes are obtained with multi-walled carbon nanotubes. Aligned boron nitride nanotubes are produced when aligned multi-walled carbon nanotubes are employed as the starting material suggesting the templating role of the nanotubes. Boron nitride nanotubes with different structures have been obtained by reacting boric acid with NH3 in the presence of a mixture of activated carbon and Fe particles. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the wide variety of projected applications of ultrapure nitrides in advanced technologies, there is interest in developing new cost-effective methods of synthesis. Explored in this study is the use of ammonia and hydrazine for the synthesis of nitrides from oxides, sulfides and chlorides. Even when the standard Gibbs energy change for the nitridation reactions involved are moderately positive, the reaction can be made to proceed by lowering the partial pressure of the product gas below its equilibrium value. Use of a metastable form of precursor in the nanometric size range is an alternative method to facilitate nitridation. Ellingham-Richardson-Jeffes diagrams are used for a panoramic presentation of the driving force for each set of reactions as a function of temperature. Oxides are the least promising precursors for nitride synthesis; sulfides offer a larger synthetic window for many useful nitrides such as BN, AlN, InN, VN, TiN, ThN and Si3N4. The standard Gibbs free energy changes for reactions involving chlorides with either ammonia or hydrazine are much more negative. Hydrazine is a more powerful nitriding agent than ammonia. The metastability of hydrazine requires that it be introduced into a reactor through a water-cooled lance. The use of volatile halides with ammonia or hydrazine offers the potential for synthesis of pure and doped nanocrystalline nitrides. Nitride thin films can also be prepared by suitable adaptations of the chloride route. (C) 2002 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the successful synthesis of crystalline carbon nitride by chemical vapor deposition of certain nitrogen containing organic precursors. The precursor is heated and the vapors enter the hot deposition zone where they are pyrolysed and deposited in the form of thin films over pretreated substrates. The powder x-ray diffraction analysis shows clear peaks corresponding to the carbon nitride crystals of tetragonal form in addition to a broad hump corresponding to the amorphous nitrogenated carbon. The crystallites size is similar to300Angstrom and the volume fraction of the crystallites is about similar to7%. The optimum conditions of preparation are found out. The Infrared spectra of these samples also suggest the formation of Carbon Nitride crystals. The analysis reconfirms that the material contains crystallites of Carbon Nitride embedded in an amorphous matrix of nitrogenated carbon. Further the material is characterized by C,H,N elemental analysis, EDX and Raman spectra. Since all the above analyses probe the bulk material, the background amorphous matrix in this case, expecting a clear evidence of nanometer sized crystallites from these tests are unlikely. Attempts are being made to increase the yield of these carbon nitride crystallites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solid oxide galvanic cell and a gas-solid (View the MathML source) equilibration technique have been used to measure the activities of the solutes in the α-solid solutions of silver with indium and tin. The results are consistent with the information now available for the corresponding liquid alloys, the phase diagram and the heats of mixing of the solid alloy. When the results of this study are taken together with published data for the α-solid solutions in Ag + Cd system, it is found that the variation of the excess partial free energy of the solute with mole fraction can be correlated to the electron/atom ratio. The significant thennodynamic parameter that explains the Hume-Rothery findings in these alloys appears to be the rate of change of the excess partial free energy with composition near the phase boundary, and this in turn reflects the value of the solute-solute interaction energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin foils of Cu, Au and Cu + Au alloys embedded in indium sesquioxide were equilibrated with controlled streams of CO-CO2 mixtures. The equilibrium concentrations of indium in the foils were determined by neutron activation analysis. The corresponding chemical potentials of indium were calculated from the standard free energies of formation of carbon monoxide, carbon dioxide, and indium oxide. It was found that the size difference between the solute and the solvent does not make significant contributions to the solute—solute interaction energy in the α-phase. The chemical potential of indium at one at.% concentration is 8.6 Kcals more negative in gold than in copper at 900°K. The variation of this chemical potential with alloy composition in Cu + Au system was in good agreement with Alcock and Richardson's quasichemical equation. The agreement is strengthened by the accurate knowledge of the co-ordination number in these substitutional solid solutions from X-ray diffraction studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid indium in the temperature range 650–820 °C and in liquid copper-indium alloys at 1100 °C in equilibrium with indium sesquioxide has been measured by a phase equilibration technique. The solubility of oxygen in pure indium is given by the relation log(at.% O) = −4726/T + 3.73 (±0.08) Using the recently measured values for the standard free energy of formation of In2O3 and assuming that oxygen obeys Sievert's law up to saturation, the standard free energy of solution of molecular oxygen in liquid indium is calculated as View the MathML sourceΔG°= −51 440 + 8.07 T (±500) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which activity is equal to atomic per cent. The effect of indium additions on the activity coefficient of oxygen dissolved in liquid copper was measured by a solid oxide galvanic cell. The interaction parameter ϵ0In is given by View the MathML source The experimentally determined variation of the activity coefficient of oxygen in dilute solution in Cu-In alloys is in fair agreement with that predicted by a quasichemical model in which each oxygen atom is assumed to be interstitially coordinated to four metal atoms and the nearest neighbour metal atoms are assumed to lose approximately half their metallic cohesive energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emf measurements on the galvanic cell Pt, Ta, In + In,O, / Tho,-Y,03 / Cu + C+O, Pt were used to obtain the standard free energy of formation of 1%03fr om 600 to 900°C. Differential thermal analysis was used to detect the decomposition of In2(S0,), under controlled SO2 + O2 + Ar mixtures in thqtemperature range 640-8wC. X-ray diffraction analysis indicated that the decomposition product was 1%03 without an oxywlphate intermediate. The following equations were obtained for the variation of the standard free-energy change(Jlmole) with temperature:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a systematic study to explore the effect of important process variables on the composition and structure of niobium nitride thin films synthesized by Reactive Pulsed Laser Deposition (RPLD) technique through ablation of high purity niobium target in the presence of low pressure nitrogen gas. Secondary Ion Mass Spectrometry has been used in a unique way to study and fix gas pressure, substrate temperature and laser fluence, in order to obtain optimized conditions for one variable in single experimental run. The x-ray diffraction and electron microscopic characterization have been complemented by proton elastic backscattering spectroscopy and x-ray photoelectron spectroscopy to understand the incorporation of oxygen and associated non-stoichiometry in the metal to nitrogen ratio. The present study demonstrates that RPLD can be used for obtaining thin film architectures using non-equilibrium processing. Finally the optimized NbN thin films were characterized for their hardness using nano-indentation technique and found to be similar to 30 GPa at the deposition pressure of 8 Pa. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time silicon nanowires have been grown on indium (In) coated Si (100) substrates using e-beam evaporation at a low substrate temperature of 300 degrees C. Standard spectroscopic and microscopic techniques have been employed for the structural, morphological and compositional properties of as grown Si nanowires. The as grown Si nanowires have randomly oriented with an average length of 600 nm for a deposition time of 15 min. As grown Si nanowires have shown indium nanoparticle (capped) on top of it confirming the Vapor Liquid Solid (VLS) growth mechanism. Transmission Electron Microscope (TEM) measurements have revealed pure and single crystalline nature of Si nanowires. The obtained results have indicated good progress towards finding alternative catalyst to gold for the synthesis of Si nanowires. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk Ge15Te85−x In x (1 ≤ x ≤ 11) series of glasses have been found to exhibit a threshold switching behaviour for an input current of 2 mA. An initial decrease is seen in the switching voltages (V T) with the addition of indium, which is due to the higher metallicity of indium. An increase is seen in V T above 3 at.% of indium, which proceeds until 8 at.%, with a change in slope (lower to higher) seen around 7 at.%. Beyond x = 8, a reversal in trend is exhibited in the variation of V T, with a well-defined minimum around x = 9 at.%. Based on the composition dependence of V T, it is proposed that Ge15Te85−x In x glasses exhibit an extended rigidity percolation threshold. The composition, x = 3, at which the V T starts to increase and the composition, x = 7, at which a slope change is exhibited correspond to the onset and completion, respectively, of the extended stiffness transition. Thermal studies and photoconductivity measurements also support the idea of an extended rigidity percolation in Ge15Te85−x In x glasses. In addition, the minimum seen in V T at x = 9 is associated with the chemical threshold (CT) of this glassy system.