862 resultados para Existential analytics
Resumo:
La velocità di cambiamento che caratterizza il mercato ha posto l'attenzione di molte imprese alla Business Analysis. La raccolta, la gestione e l'analisi dei dati sta portando numerosi benefici in termini di efficienza e vantaggio competitivo. Questo è reso possibile dal supporto reale dei dati alla strategia aziendale. In questa tesi si propone un'applicazione della Business Analytics nell'ambito delle risorse umane. La valorizzazione del Capitale Intellettuale è fondamentale per il miglioramento della competitività dell'impresa, favorendo così la crescita e lo sviluppo dell'azienda. Le conoscenze e le competenze possono incidere sulla produttività, sulla capacità innovativa, sulle strategie e sulla propria reattività a comprendere le risorse e le potenzialità a disposizione e portano ad un aumento del vantaggio competitivo. Tramite la Social Network Analysis si possono studiare le relazioni aziendali per conoscere diversi aspetti della comunicazione interna nell'impresa. Uno di questi è il knowledge sharing, ovvero la condivisione della conoscenza e delle informazioni all'interno dell'organizzazione, tema di interesse nella letteratura per via delle potenzialità di crescita che derivano dal buon utilizzo di questa tecnica. L'analisi si è concentrata sulla mappatura e sullo studio del flusso di condivisione di due delle principali componenti della condivisione di conoscenza: sharing best prectices e sharing mistakes, nel caso specifico si è focalizzato lo studio sulla condivisione di miglioramenti di processo e di problematiche o errori. È stata posta una particolare attenzione anche alle relazioni informali all'interno dell'azienda, con l'obiettivo di individuare la correlazione tra i rapporti extra-professionali nel luogo di lavoro e la condivisione di informazioni e opportunità in un'impresa. L'analisi delle dinamiche comunicative e l'individuazione degli attori più centrali del flusso informativo, permettono di comprendere le opportunità di crescita e sviluppo della rete di condivisione. La valutazione delle relazioni e l’individuazione degli attori e delle connessioni chiave fornisce un quadro dettagliato della situazione all'interno dell'azienda.
Resumo:
Il presente elaborato ha come oggetto la progettazione e lo sviluppo di una soluzione Hadoop per il Calcolo di Big Data Analytics. Nell'ambito del progetto di monitoraggio dei bottle cooler, le necessità emerse dall'elaborazione di dati in continua crescita, ha richiesto lo sviluppo di una soluzione in grado di sostituire le tradizionali tecniche di ETL, non pi�ù su�fficienti per l'elaborazione di Big Data. L'obiettivo del presente elaborato consiste nel valutare e confrontare le perfomance di elaborazione ottenute, da un lato, dal flusso di ETL tradizionale, e dall'altro dalla soluzione Hadoop implementata sulla base del framework MapReduce.
Resumo:
This paper provides a brief introduction to the domain of ‘learning analytics’. We first explain the background and idea behind the concept. Then we give a brief overview of current research issues. We briefly list some more controversial issues before concluding.
Resumo:
Teaching is a dynamic activity. It can be very effective, if its impact is constantly monitored and adjusted to the demands of changing social contexts and needs of learners. This implies that teachers need to be aware about teaching and learning processes. Moreover, they should constantly question their didactical methods and the learning resources, which they provide to their students. They should reflect if their actions are suitable, and they should regulate their teaching, e.g., by updating learning materials based on new knowledge about learners, or by motivating learners to engage in further learning activities. In the last years, a rising interest in ‘learning analytics’ is observable. This interest is motivated by the availability of massive amounts of educational data. Also, the continuously increasing processing power, and a strong motivation for discovering new information from these pools of educational data, is pushing further developments within the learning analytics research field. Learning analytics could be a method for reflective teaching practice that enables and guides teachers to investigate and evaluate their work in future learning scenarios. However, this potentially positive impact has not yet been sufficiently verified by learning analytics research. Another method that pursues these goals is ‘action research’. Learning analytics promises to initiate action research processes because it facilitates awareness, reflection and regulation of teaching activities analogous to action research. Therefore, this thesis joins both concepts, in order to improve the design of learning analytics tools. Central research question of this thesis are: What are the dimensions of learning analytics in relation to action research, which need to be considered when designing a learning analytics tool? How does a learning analytics dashboard impact the teachers of technology-enhanced university lectures regarding ‘awareness’, ‘reflection’ and ‘action’? Does it initiate action research? Which are central requirements for a learning analytics tool, which pursues such effects? This project followed design-based research principles, in order to answer these research questions. The main contributions are: a theoretical reference model that connects action research and learning analytics, the conceptualization and implementation of a learning analytics tool, a requirements catalogue for useful and usable learning analytics design based on evaluations, a tested procedure for impact analysis, and guidelines for the introduction of learning analytics into higher education.
Resumo:
In recent years, learning analytics (LA) has attracted a great deal of attention in technology-enhanced learning (TEL) research as practitioners, institutions, and researchers are increasingly seeing the potential that LA has to shape the future TEL landscape. Generally, LA deals with the development of methods that harness educational data sets to support the learning process. This paper provides a foundation for future research in LA. It provides a systematic overview on this emerging field and its key concepts through a reference model for LA based on four dimensions, namely data, environments, context (what?), stakeholders (who?), objectives (why?), and methods (how?). It further identifies various challenges and research opportunities in the area of LA in relation to each dimension.
Resumo:
Various avours of a new research field on (socio-)physical or personal analytics have emerged, with the goal of deriving semantically-rich insights from people's low-level physical sensing combined with their (online) social interactions. In this paper, we argue for more comprehensive data sources, including environmental (e.g. weather, infrastructure) and application-specific data, to better capture the interactions between users and their context, in addition to those among users. To illustrate our proposed concept of synergistic user <-> context analytics, we first provide some example use cases. Then, we present our ongoing work towards a synergistic analytics platform: a testbed, based on mobile crowdsensing and the Internet of Things (IoT), a data model for representing the different sources of data and their connections, and a prediction engine for analyzing the data and producing insights.
Resumo:
A demonstration of the installation and use of Google Analytics with CONTENTdm in order to better gather metrics and insight into both general and specific online traffic across such digital repositories. Issues addressed will include collection-level traffic, digital object-level traffic, general site referrals to the repository, specific referrals to the repository, search engine referrals, user keywords, traffic occurring inside and/or outside an institution’s own network, reporting options.
Resumo:
Analysis of learning data (learning analytics) is a new research field with high growth potential. The main objective of Learning analytics is the analysis of data (interactions being the basic data unit) generated in virtual learning environments, in order to maximize the outcomes of the learning process; however, a consensus has not been reached yet on which interactions must be measured and what is their influence on learning outcomes. This research is grounded on the study of e-learning interaction typologies and their relationship with students? academic performance, by means of a comparative study between different interaction typologies (based on the agents involved, frequency of use and participation mode). The main conclusions are a) that classifications based on agents offer a better explanation of academic performance; and b) that each of the three typologies are able to explain academic performance in terms of some of their components (student-teacher and student-student interactions, evaluating students interactions and active interactions, respectively), with the other components being nonrelevant.
Resumo:
Learning analytics is the analysis of static and dynamic data extracted from virtual learning environments, in order to understand and optimize the learning process. Generally, this dynamic data is generated by the interactions which take place in the virtual learning environment. At the present time, many implementations for grouping of data have been proposed, but there is no consensus yet on which interactions and groups must be measured and analyzed. There is also no agreement on what is the influence of these interactions, if any, on learning outcomes, academic performance or student success. This study presents three different extant interaction typologies in e-learning and analyzes the relation of their components with students? academic performance. The three different classifications are based on the agents involved in the learning process, the frequency of use and the participation mode, respectively. The main findings from the research are: a) that agent-based classifications offer a better explanation of student academic performance; b) that at least one component in each typology predicts academic performance; and c) that student-teacher and student-student, evaluating students, and active interactions, respectively, have a significant impact on academic performance, while the other interaction types are not significantly related to academic performance.
Resumo:
Since the beginning of Internet, Internet Service Providers (ISP) have seen the need of giving to users? traffic different treatments defined by agree- ments between ISP and customers. This procedure, known as Quality of Service Management, has not much changed in the last years (DiffServ and Deep Pack-et Inspection have been the most chosen mechanisms). However, the incremen-tal growth of Internet users and services jointly with the application of recent Ma- chine Learning techniques, open up the possibility of going one step for-ward in the smart management of network traffic. In this paper, we first make a survey of current tools and techniques for QoS Management. Then we intro-duce clustering and classifying Machine Learning techniques for traffic charac-terization and the concept of Quality of Experience. Finally, with all these com-ponents, we present a brand new framework that will manage in a smart way Quality of Service in a telecom Big Data based scenario, both for mobile and fixed communications.