964 resultados para Evolution, Molecular


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The centromere protein A (CENP-A), a histone H3-like protein, provides an essential role for chromosomal segregation during mitosis and meiosis. In this study we identified ten new CENP-A-like genes (excluding the original CENP-A gene) in cow by searching

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) plays an important role in regulation of cell growth, differentiation, apoptosis and individual development in animals. The study of sequences variation and molecular evolution of CTGF gene across various species of the cyprinid could be helpful for understanding of speciation and gene divergence in this kind of fish. In this study, 19 novel sequences of CTGF gene were obtained from the representative species of the family Cyprinidae using PCR amplification, cloning and sequencing. Phylogenetic relationships of Cyprinidae were reconstructed by neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian method. Oryzias latipes from the family Cyprinodontidae was assigned to be the outgroup taxon. Leuciscini and Barbini were clustered into the monophyletic lineages, respectively, with the high nodal supports. The estimation of the ratio of non-synonymous to synonymous substitution (dN/dS) for the various branches indicated that there stood the different evolution rates between the Leuciscini and the Barbini. With the ratio of dN/dS of the Leuciscini being lower than that of the Barbini, species within the Barbini were demonstrated to be subjected to the relatively less selection pressure and under the relaxable evolution background. A 6 by indel (insertion/deletion) was found at the 5' end of CTGF gene of Cyprinidae, and this 6 by deletion only appeared in the Leuciscini, which is a typical characteristic of the Leuciscini and provides evidence for the monophylogeny of the Leuciscini. For the amino acid sequences of CTGF protein, the most variations and indels were distributed in the signal region and IGFBP region of this protein, implying that these variations were correlated with the regulation of the CTGF gene expression and protein activity. (c) 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evolution of surface morphology and optical characteristics of 1.3-mu m In0.5Ga0.5As/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) are investigated by atomic force microscopy (AFM) and photoluminescence (PL). After deposition of 16 monolayers (ML) of In0.5Ga0.5As, QDs are formed and elongated along the [110] direction when using sub-ML depositions, while large size InGaAs QDs with better uniformity are formed when using ML or super-ML depositions. It is also found that the larger size QDs show enhanced PL efficiency without optical nonlinearity, which is in contrast to the elongated QDs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A detailed observation was made using atomic force microscopy on the two- to three-dimensional (2D-3D) growth mode transition in the molecular-beam epitaxy of InAs/GaAs(001). The evolution of the 3D InAs islands during the 2D-3D mode transition was divided into two successive phases. The first phase may be explained in terms of a critical phenomenon of the second-order phase transition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uniform and high phosphorous doping has been demonstrated during Si growth by GSMBE using disilane and phosphine. The p-n diodes, which consist of a n-Si layer and a p-SiGe layer grown on Si substrate, show a normal I-V characteristic. A roughening transition during P-doped Si growth is found. Ex situ SEM results show that thinner film is specular. When the film becomes thicker, there are small pits of different sizes randomly distributed on the flat surface. The average pit size increases, the pit density decreases, and the size distribution is narrower for even thicker film. No extended defects are found at the substrate interface or in the epilayer. Possible causes for the morphological evolution are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Step like morphology of (331)A high-index surfaces during atomic hydrogen assisted molecular beam epitaxy (MBE) growth has been investigated. Atomic Force Microscope (AFM) measurements show that in conventional MBE, the step heights and terrace widths of GaAs layers increase monotonically with increasing substrate temperatures. The terrace widths and step densities increase with increasing the GaAs layer thickness and then saturates. And, in atomic hydrogen assisted MBE, the terrace width reduces and density increases when depositing the same amount of GaAs. It attributes this to the reduced surface migration length of Ga adatoms with atomic hydrogen. Laterally ordered InAs self-aligned nano-wires were grown on GaAs (331)A surfaces and its optical polarization properties were revealed by photoluminescence measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work represents the nucleotide sequence of the core histone gene cluster from scallop Chlamys farreri. The tandemly repeated unit of 5671 bp containing a copy of the four core histone genes H4, H2B, H2A and H3 was amplified and identified by the techniques of homology cloning and genomic DNA walking. All the histone genes in the cluster had the structures in their 3' flanking region which related to the evolution of histone gene expression patterns throughout the cell cycle, including two different termination signals, the hairpin structure and at least one AATAAA polyadenylation signal. In their 5' region, the transcription initiation sites with a conserved sequence of 5'-PyATTCPu-3' known as the CAP site were present in all genes except to H2B, generally 37-45 bp upstream of the start code. Canonical TATA and CAAT boxes were identified only in certain histone genes. In the case of the promoters of H2B and H2A genes, there was a 5'-GATCC-3' element, which had been found to be essential to start transcription at the appropriate site. After this element, in the promoter of H2B, there was another sequence, 5'-GGATCGAAACGTTC-3', which was similar to the consensus sequence of 5'-GGAATAAACGTATTC-3' corresponding to the H2B-specific promoter element. The presence of enhancer sequences (5'-TGATATATG-3') was identified from the H4 and H3 genes, matching perfectly with the consensus sequence defined for histone genes. There were several slightly more complex repetitive DNA in the intergene regions. The presence of the series of conserved sequences and reiterated sequences was consistent with the view that mollusc histone gene cluster arose by duplicating of an ancestral precursor histone gene, the birth-and-death evolution model with strong purifying selection enabled the histone cluster less variation and more conserved function. Meanwhile, the H2A and the H2B were demonstrated to be potential good marks for phylogenetic analysis. All the results will be contributed to the characterization of repeating histone gene families in molluscs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Aims Rheum, a highly diversified genus with about 60 species, is mainly confined to the mountainous and desert regions of the Qinghai-Tibetan plateau and adjacent areas. This genus represents a good example of the extensive diversification of the temperate genera in the Qinghai-Tibetan plateau, in which the forces to drive diversification remain unknown. To date, the infrageneric classification of Rheum has been mainly based on morphological characters. However, it may have been subject to convergent evolution under habitat pressure, and the systematic position of some sections are unclear, especially Sect. Globulosa, which has globular inflorescences, and Sect. Nobilia, which has semi-translucent bracts. Recent palynological research has found substantial contradictions between exine patterns and the current classification of Rheum. Two specific objectives of this research were (1) to evaluate possible relationships of some ambiguous sections with a unique morphology, and (2) to examine possible occurrence of the radiative speciation with low genetic divergence across the total genus and the correlation between the extensive diversification time of Rheum and past geographical events, especially the recent large-scale uplifts of the Qinghai-Tibetan Plateau.Methods The chloroplast DNA trnL-F region of 29 individuals representing 26 species of Rheum, belonging to seven out of eight sections, was sequenced and compared. The phylogenetic relationships were further constructed based on the sequences obtained.Key Results Despite the highly diversified morphology, the genetic variation in this DNA fragment is relatively low. The molecular phylogeny is highly inconsistent with gross morphology, pollen exine patterns and traditional classifications, except for identifying all samples of Sect. Palmata, three species of Sect. Spiciformia and a few species of Sect. Rheum as corresponding monophyletic groups. The monotypic Sect. Globulosa showed a tentative position within the clade comprising five species of Sect. Rheum. All of the analyses revealed the paraphyly of R. nobile and R. alexandrae, the only two species of Sect. Nobilia circumscribed by the possession of large bracts. The crude calibration of lineages based on trnL-F sequence differentiation implied an extensive diversification of Rheum within approx. 7 million years.Conclusions Based on these results, it is suggested that the rich geological and ecological diversity caused by the recent large-scale uplifts of the Qinghai-Tibetan Plateau since the late Tertiary, coupled with the oscillating climate of the Quaternary stage, might have promoted rapid speciation in small and isolated populations, as well as allowing the fixation of unique or rare morphological characters in Rheum. Such a rapid radiation, combined with introgressive hybridization and reticulate evolution, may have caused the transfer of cpDNA haplotypes between morphologically dissimilar species, and might account for the inconsistency between morphological classification and molecular phylogeny reported here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and UV irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains are numerically computed by solving the coagulation equation for settling dust particles, with the result that the mass and total surface area of dust grains per unit volume of the gas in the disks are very small, except at the midplane. The H2 level populations and line emission are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk and in the surface layer, while the UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-rayinduced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the dust properties. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient. This makes the level populations change from LTE to non-LTE distributions, which results in changes to the line ratios. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Posttranslational processing of proadrenomedullin generates two biologically active peptides, adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP). Sequence comparison of homologous proadrenomedullin genes in vertebrate evolution shows a high degree of stability in the reading frame for AM, whereas PAMP sequence changes rapidly. Here we investigate the functional significance of PAMP phylogenetic variation studying two of PAMP's better characterized physiological activities, angiogenic potential and antimicrobial capability, with synthetic peptides carrying the predicted sequence for human, mouse, chicken, and fish PAMP. All tested peptides induced angiogenesis when compared with untreated controls, but chicken and fish PAMP, which lack terminal amidation, were apparently less angiogenic than their human and mouse homologs. Confirming the role of amidation in angiogenesis, Gly-extended and free acid variants of human PAMP produced responses similar to the natural nonamidated peptides. In contrast, antimicrobial activity was restricted to human PAMP, indicating that this function may have been acquired at a late time during the evolution of PAMP. Interestingly, free acid human PAMP retained antimicrobial activity whereas the Gly-extended form did not. This fact may reflect the need for maintaining a tightly defined structural conformation in the pore-forming mechanism proposed for these antimicrobial agents. The evolution of PAMP provides an example of an angiogenic peptide that developed antimicrobial capabilities without losing its original function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As proteínas existentes nas células são produzidas pelo mecanismo de tradução do mRNA, no qual a informação genética contida nos genes é descodificada em cadeias polipeptídicas. O código genético, que define as regras de descodificação do genoma, minimiza os erros de tradução do mRNA, garantindo a síntese de proteínas com elevada fidelidade. Esta é essencial para a estabilidade do proteoma e para a manutenção e funcionamento dos processos celulares. Em condições fisiológicas normais, os erros da tradução do mRNA ocorrem com frequências que variam de 10-3 a 10-5 erros por codão descodificado. Situações que aumentam este erro basal geralmente estão associadas ao envelhecimento, stresse e a doenças; no entanto, em certos organismos o código genético é traduzido naturalmente com elevado erro, indicando que a síntese de proteínas aberrantes pode de algum modo ser vantajosa. A fim de estudar a resposta celular aos erros de tradução do mRNA, construímos leveduras que incorporam serina no proteoma em resposta a um codão de leucina, usando a expressão constitutiva de um tRNASer mutante. Este fenómeno genético artificial provocou uma forte diminuição da esporulação, da viabilidade e da eficiência de mating, afectando imensamente a reprodução sexual da levedura. Observou-se também uma grande heterogeneidade no tamanho e na forma das células e elevada instabilidade genómica, com o aparecimento de populações poliplóides e aneuplóides. No sentido de clarificar as bases celulares e moleculares daqueles fenótipos e compreender melhor a biologia do erro de tradução do mRNA, construímos também células de levedura que inserem serina em resposta a um codão de leucina de modo indutível e controlado. Utilizaram-se perfis de mRNA total e de mRNA associado a polissomas para elucidar a resposta celular ao erro de tradução do mRNA. Observou-se a indução de genes envolvidos na resposta ao stresse geral, stresse oxidativo e na unfolded protein response (UPR). Um aumento significativo de espécies reactivas de oxigénio (ROS) e um forte impacto negativo na capacidade das células pós-mitóticas re-iniciarem o crescimento foram também observados. Este fenótipo de perda de viabilidade celular foi resgatado por scavangers de ROS, indicando que o stresse oxidativo é a principal causa de morte celular causada pelos erros de tradução. Este estudo levanta a hipótese de que o stresse oxidativo e a acumulação de ROS, ao invés do colapso súbito do proteoma, são as principais causas da degeneração celular e das doenças humanas associadas aos erros de tradução do genoma. ABSTRACT: Proteins are synthesized through the mechanism of translation, which uses the genetic code to transform the nucleic acids based information of the genome into the amino acids based information of the proteome. The genetic code evolved in such a manner that translational errors are kept to a minimum and even when they occur their impact is minimized by similar chemical properties of the amino acids. Protein synthesis fidelity is essential for proteome stability and for functional maintenance of cellular processes. Indeed, under normal physiological conditions, mistranslation occurs at frequencies that range from 10-3 to 10-5 errors per codon decoded. Situations where this basal error frequency increases are usually associated to aging and disease. However, there are some organisms where genetic code errors occur naturally at high level, suggesting that mRNA mistranslation can somehow be beneficial. In order to study the cellular response to mRNA mistranslation, we have engineered single codon mistranslation in yeast cells, using constitutive expression of mutant tRNASer genes. These mistranslating strains inserted serines at leucine-CUG sites on a proteome wide scale due to competition between the wild type tRNALeu with the mutant tRNASer. Such mistranslation event decreased yeast sporulation, viability and mating efficiencies sharply and affected sexual reproduction strongly. High heterogeneity in cell size and shape and high instability in the genome were also observed, with the appearance of some polyploid or aneuploid cell populations. To further study the cellular and molecular basis of those phenotypes and the biology of mRNA mistranslation, we have also engineered inducible mRNA misreading in yeast and used total mRNA and polysome associated mRNA profiling to determine whether codon misreading affects gene expression. Induced mistranslation up-regulated genes involved in the general stress response, oxidative stress and in the unfolded protein response (UPR). A significant increase in reactive oxygen species (ROS) and a strong negative impact on the capacity of post-mitotic cells to re-initiate growth in fresh media were also observed. This cell viability phenotype was rescued by scavengers of ROS, indicating that oxidative stress is the main cause of cell death caused by mRNA mistranslation. This study provides strong support for the hypothesis that oxidative stress and ROS accumulation, rather than sudden proteome collapse or major proteome disruption, are the main cause of the cellular degeneration observed in human diseases associated mRNA mistranslation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

No actual cenário de perda acelerada de biodiversidade, o nosso conhecimento dos ecossistemas marinhos, apesar da sua extensão e complexidade, continua muito inferior ao dos ecossistemas terrestres. A classe Malacostraca (Arthropoda, Crustacea), um grupo dos mais representativos nos ecossistemas marinhos, apresenta um elevado nível de diversidade morfológica e ecológica, mas difícil sua identificação ao nível de espécie requer frequentemente a ajuda de especialistas em taxonomia. A utilização recente do “barcoding” (código de barras do ADN), revelou ser um método rápido e eficaz para a identificação de espécies em diversos grupos de metazoários, incluindo os Malacostraca. No âmbito desta tese foi construída uma base de dados de código de barras de ADN envolvendo 132 espécies de Malacostraca vários locais de amostragem no Atlântico Nordeste e Mediterrâneo. As sequências de ADN mitocondrial provenientes de 601 espécimes formaram, em 95% dos casos, grupos congruentes com as identificações baseadas em características morfológicas. No entanto, foi detectado polimorfismo em seis casos e a divergência intra-específica foi elevada em exemplares pertencentes a duas espécies morfológicas, sugerindo, neste caso, a ocorrência de especiação críptica. Este estudo confirma a utilidade do código de barras de ADN para a identificação de Malacostraca marinhos. Apesar do sucesso obtido, este método apresenta alguns problemas, como por exemplo a possível amplificação de pseudogenes. A ocorrência de pseudogenes e as possíveisabordagens para a detecção e resolução deste tipo de problemas são discutidas com base em casos de estudo: análises dos códigos de barras ADN na espécie Goneplax rhomboides (Crustacea, Decapoda). A análise dos códigos de barras ADN revelou ainda grupos prioritários de decápodes para estudos taxonómicos e sistemáticos, nomeadamente os decápodes dos géneros Plesionika e Pagurus. Neste âmbito são discutidas as relações filogenéticas entre espécies seleccionadas dos géneros Plesionika e Pagurus. Este trabalho aponta para várias questões no âmbito da biodiversidade e evolução molecular da classe Malacostraca que carecem de um maior esclarecimento, podendo ser considerado como a base para estudo futuros. Análises filogenéticas adicionais integrando dados morfológicos e moleculares de um maior número de espécies e de famílias deverão certamente conduzir a uma melhor avaliação da biodiversidade e da evolução dentro da classe.