996 resultados para EXCITON STARK LADDER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the capacitance-voltage characteristics of an optically excited wide quantum well. Both self-consistent simulations and experimental results show the striking quantum contribution to the capacitance near zero bias which is ascribed to the swift decreasing of the overlap between the electron and hole wave functions in the well as the longitudinal field goes up. This quantum capacitance feature is regarded as an electrical manifestation of the quantum-confined Stark effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum-confined Stark effects in InAs/GaAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of perpendicular and parallel electric field. In our calculation, the effect of finite offset, valence band mixing, and strain are all taken into account. The results show that the perpendicular electric field weakly affects the electron ground state and hole energy levels. The energy levels are affected strongly by the parallel electric field. For the electron, the energy difference between the ground state and the first excited state decreases as electric field increases. The optical transition energies have clear redshifts in electric field. The theoretical results agree well with the available experimental data. Our calculated results are useful for the application of quantum dots to photoelectric devices. (C) 2000 American Institute of Physics. [S0021-8979(00)11001-7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the hole levels and exciton states in CdS nanocrystals by using the hole effective-mass Hamiltonian for wurtzite structure. It is found that the optically passive P-x state will become the ground hole state for small CdS quantum dots of radius less than 69 Angstrom. It suggests that the "dark exciton" would be more easily observed in the CdS quantum dots than that in CdSe quantum dots. The size dependence of the resonant Stokes shift is predicted for CdS quantum dots. Including the Coulomb interaction, exciton energies as functions of the dot radius are calculated and compared with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbital coupling (SOC) on the hole states are investigated. It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb interaction of exciton states is also taken into account. In order to identify the exciton states, we use the approximation of eliminating the coupling of Gamma(6)(X, Y) with Gamma(1)(Z) states. The results are found to account for most of the important features of the experimental photoluminescence excitation spectra of Norris ct nl. However, if the interaction between Gamma(6)(X, Y) and Gamma(1)(Z) states is ignored, the optically passive P-x state cannot become the ground hole state for small CdSe quantum dots of radius less than 30 Angstrom. It is suggested that the intrinsic asymmetry of the hexagonal lattice structure and the coupling of Gamma(6)(X,Y) with Gamma(1)(Z) states are important for understanding the "dark exciton" effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum-confined Stark shifts in SiGe/Si type-I multiple quantum wells are suggested by the bias dependence of the photocurrent spectra of p-i-n photodiodes. Both Stark redshift and blueshift have been observed for the same sample in the different ranges of electric fields applied to the quantum wells. The turnaround point corresponds to a certain electric field (named "critical" field). This phenomenon was generally predicted by Austin in 1985 [Phys. Rev. B 31, 5569 (1985)] and calculated in detail for SiGe quantum structure by Kim recently [Thin Solid Films 321, 215 (1998)]. The critical electric field obtained from the photocurrent spectra is in reasonable agreement with the theoretical prediction. (C) 2000 American Institute of Physics. [S0021-8979(00)03711-7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a newly-developed population mixing technique we have studied the exciton dynamics in self-organized InAs/GaAs quantum dots (QDs). It is found that the exciton lifetime in self-organized InAs/GaAs QDs is around 1 ns, almost independent of InAs layer thickness. The temperature dependence of the exciton lifetime varies from sample to sample, but no obvious experimental evidence was found that the lifetime is related to the delta-function of density of states in QDs. We have also found that the population mixing technique can be used to directly reveal the band-filling effect in the excited states of the QDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN films with electron concentration ranging from n similar to 10(17) to 10(20) cm(-3) grown by metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were investigated by variable-temperature photoluminescence and absorption measurements. The energy positions of absorption edge as well as photoluminescence peak of these InN samples with electron concentration above 10(18) cm(-3) show a distinct S-shape temperature dependence. With a model of potential fluctuations caused by electron-impurity interactions, the behavior can be quantitatively explained in terms of exciton freeze-out in local potential minima at sufficiently low temperatures, followed by thermal redistribution of the localized excitons when the band gap shrinks with increasing temperature. The exciton localization energy sigma (loc) is found to follow the n (5/12) power relation, which testifies to the observed strong localization effects in InN with high electron concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal-optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases These results reveal that there is a large built-in electric field in the well layer and the exciton-LO phonon coupling is strongly affected by the thickness of the cap layer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of the excitonic lifetime on the well width has been studied in conventional GaAs/AlGaAs quantum wells. Two clearly different variations of the measured excitonic lifetime have been observed. For wide well widths, we find a nearly linear decrease of the lifetime with decreasing well width. However, when the well is further decreased, a saturation and even increase of the lifetime with decreasing well width are observed. The experimental data are compared with the theory of radiative excitonic recombination, and show that well width dependence of the measured photoluminescence lifetime can be attributed mainly to the change of the excitonic effective volume and the overlap integral as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have observed Wannier-Stark localization in strained In0.2Ga0.8As/GaAs superlattices by low- and room-temperature photocurrent spectra measurements. The experimental results are well in agreement with the theoretical predictions. A large field-induced modulation response of the absorption edge of the superlattices at room temperature suggests the possibilities of the application to the design of various kinds of electro-optical devices operating at a wavelength of 0.98 mum, based on Wannier-Stark localization effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the radiative excitonic lifetime as a function of the well width in GaAs/GaAlAs quantum wells. An increasing lifetime with decreasing well width has been observed in very narrow and high quality GaAs/GaAlAs quantum wells, and attributed to the reduced overlap of the electron and hole wave functions and the increase of the exciton effective volume. This is the first observation of its kind in the conventional GaAs/GaAlAs quantum wells.