617 resultados para Cognición (Lingüistica)
Resumo:
Pensar en una evaluación en competencias nos remite a pensar, en el sentido de la evaluación, del termino competencia, pero sobre todo a las practicas pedagógicas sobre componentes curriculares y su sentido en la formación de los niños y jóvenes de nuestro país. Una evaluación en competencias, es una evaluación que centra la atención en el saber hacer y en el hacer sabiendo, que debe permitir reconocer las diferencias y las potencialidades de nuestros jóvenes, de esta manera el reto pedagógico de todo maestro radica en el tipo de problema o de actividad que le propone al estudiante para activar sus competencias o favorecer su desarrollo. Los desempeños son expresiones de esas competencias y aunque no son exclusivos de una determinada área si están asociados a campos del saber específicos, dadas las particularidades de las disciplinas de conocimiento. Es en este sentido que nos proponemos discutir sobre algunas competencias y desempeños asociados al saber algebraico.
Resumo:
Se considera que las nociones matemáticas tienen su origen en las ideas germinales que han surgido en diferentes momentos histórico-epistemológicos de la matemática. En la didáctica de la matemática las nociones tienen un papel preponderante como elementos articuladores de los saberes matemáticos que están en juego. En este trabajo se dan algunas evidencias del comportamiento epistemológico acerca de dos nociones: la promediación y la linealidad, las cuales no se perciben en la escuela en su estatus metamatemático. Aparecen en prácticamente todas las etapas escolares y su conceptualización en los diferentes niveles educativos es abordada de forma desarticulada, lo que propicia aprendizajes poco significativos.
Resumo:
La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.
Resumo:
A aprendizagem matemática não ocorre simplesmente pela transmissão de saberes do professor para o aluno, uma vez que é possível aprender matemática com tarefas que incentivem a construção do conhecimento que poderá favorecer o prazer pela descoberta, promover a autonomia e incentivar a comunicação. Além disso, o processo de construção do conhecimento leva o aluno a pensar mais, raciocinar mais, potencializando, dessa forma, um nível de conhecimento bem alicerçado. Nesse sentido, a Resolução de Problemas se apresenta como uma perspectiva metodológica que tem sido reconhecida mundialmente como uma meta fundamental no ensino-aprendizagem da Matemática. Assim, o presente texto pretende apresentar a Metodologia de Ensino- Aprendizagem-Avaliação de Matemática através da Resolução de Problemas como uma proposta didática para se trabalhar em sala de aula.
Resumo:
Durante muchos años en el sistema educativo se consideró el proceso de enseñanza aprendizaje de las matemáticas como una actividad ubicada en el aula, siendo el único espacio donde el que sabe, el profesor, dota de conocimientos al que aprende, el alumno. Este tipo de enseñanza, sin considerarla mala, trae como consecuencia que al enfrentar al estudiante a un problema real tenga dificultades para su solución. En este artículo se reporta parte de una investigación cuyo objetivo fue a entender el conocimiento que surge en la interacción entre dos contextos diferentes: uno el matemático y el otro el derivado de un área técnica en particular. Se describe el conocimiento de un grupo de enfoque relativo al campo conceptual de un sistema de ecuaciones lineales con dos incógnitas en el contexto del balance de materia. La aproximación cognitiva del campo conceptual de interés, se ha realizado sustentado en la Teoría de Campos Conceptuales de Vergnaud y se trabaja con la Matemática en el Contexto de las Ciencias como marco de referencia.
Resumo:
Una preocupación constante del sector educativo es la calidad de la educación que se oferta en nuestros países, las organizaciones internacionales han instrumentado mecanismos (Pisa, TIMSS, Excale, Enlace) para medir el logro académico en los niveles educativos básicos de los países agremiados, en general los resultados de estas pruebas, establecen que en el área de las matemáticas el alumnado de escuelas públicas de la educación secundaria en México tiene en promedio resultados que les ubican en los niveles de logro insuficiente y elemental. Estos resultados indican carencias graves en esta asignatura, que se enfatizan aún más cuando se analizan los resultados que obtienen las mujeres. Este trabajo forma parte de una investigación más amplia que tuvo como propósito profundizar en los factores que inciden en el nivel de logro matemático que tienen las y los estudiantes de 3° grado de secundaria.
Resumo:
La evaluación ha tomado un destacado lugar. Es una actividad prioritaria en las aulas, que causa impacto, y cuyos resultados en buena medida representan un reto para los profesores. En esta investigación pudimos constatar que al menos en lo explícito del discurso, los diseños didácticos para la enseñanza de las Matemáticas que se centran en el alumno van mejorando lentamente, pero cuando se concretan los procesos de evaluación surge una contradicción, pues el enfoque no ha sido realmente modificado, pues los aprendizajes de los estudiantes se proyectan de manera limitada pues para evaluarlos se construyen formatos tradicionales, con estructura simple que demanda respuestas directas, cortas y sin mucho trabajo de reflexión por parte del alumno. Hace falta más fundamentación en los apoyos didácticos que los profesores reciben, y el renglón de la evaluación de los aprendizajes matemáticos en el aula queda como una verdadera asignatura pendiente en la formación magisterial.
Resumo:
El presente trabajo consistió en caracterizar los significados elementales y sistémicos a los protocolos de respuestas dadas por un estudiante sobre ecuaciones de segundo grado y los puestos de manifiesto, en relación al mismo tema, por los autores del libro de texto que se utilizó de apoyo a la enseñanza y aprendizaje. Para tal fin aplicamos la técnica del análisis semiótico, generada del modelo ontológico semiótico de la cognición e instrucción matemática (Godino, 2003 y Godino y Arrieche, 2001), que nos permitió determinar el significado institucional de referencia y el significado personal declarado. También se identificaron conflictos semióticos, es decir; discordancias entre los significados personales e institucionales.
Resumo:
Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.
Resumo:
Un poco de historia. Los cálculos eran la preocupación principal de nuestros antepasados, que promovieron el desarrollo de las matemáticas. Así nacieron los logaritmos, en los últimos años del siglo XVII. Decía Laplace en aquello años, “el uso de los logaritmos, acortó el trabajo y duplicó la vida de los astrónomos”. En los últimos años de la década 1970 a 1980 se popularizaron las calculadoras. Que no son tan viejas. Yo, no las use. En 1972 entre a la facultad de química y no tenía calculadora. Un año antes, me compre una de las mejores reglas de cálculo. Para usarla deberíamos saber tanto, que nos calificarían de genio en la actualidad ¿Cuál es entonces la premisa de mi pensamiento? “Saber matemática no es saber hacer cuentas”
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
Con la propuesta, en mi clase se vale “meter la pata”, pretendo desarrollar en los estudiantes las competencias matemáticas y ciudadanas, a través de la participación activa al interior de las clases. Para ello, parto de dos premisas: (a) el error como una oportunidad para generar conocimiento y (b) las preguntas como el medio para lograr llegar a conceptos claros y argumentos válidos en relación con el objeto matemático que se estudia. Desarrollo la propuesta a partir de tres tareas diseñadas en la unidad didáctica Razones trigonométricas vistas a través de múltiples lentes que se fundamenta en el modelo del análisis didáctico. Los resultados obtenidos hasta el momento reflejan un aumento en el interés que los estudiantes tienen por el área, en el respeto por las ideas de otros y en la utilización de argumentos válidos.
Resumo:
Este trabajo se estructura en torno a la evolución (no histórica)del problema de la Educación Matemática. Una vez constatado el fracaso de la respuesta pedagógica a dicho problema, surge la Didáctica de las Matemáticas que lo aborda tomando en consideración, de manera integrada, "lo matemático" y "lo pedagógico", lo que provoca una doble ruptura: con la Pedagogía y con los modelos epistemológicos ingenuos, transparentes e incuestionables del conociminento matemático. En la segunda parte del trabajo se esquematizan muy brevemente las respuestas que proporcionan a dicho problema los dos principales Programas de Investigación en Didáctica de las Matemáticas: el Programa Cognitivo y el Programa Epistemológico.
Resumo:
Asumiendo que la evaluación debe estar integrada en el proceso de enseñanza-aprendizaje, estamos desarrollando una investigación con profesores de matemáticas de secundaria en Bogotá (Colombia), para analizar sus concepciones y prácticas acerca de la evaluación sobre la resolución de problemas en matemáticas. Partimos de un cuestionario que indaga sobre la importancia que se da a diferentes aspectos cognitivos y afectivos, y al hecho de evaluarlos. Se identifica que en la evaluación de la resolución de problemas se continúa priorizando la evaluación de aspectos del dominio cognitivo, sobre el afectivo. Y en el dominio cognitivo se hace un mayor énfasis sobre los aspectos propios del conocimiento matemático que sobre las estrategias heurísticas.
Resumo:
En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.