998 resultados para semiconducting films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films were grown on (0 0 0 1) LiNbO3 substrates by metal organic chemical vapor deposition (MOCVD). Annealing of ZnO films was performed in air for I h at 800 degrees C. The effects of annealing on the structural and optical properties of ZnO thin films on LiNbO3 substrates were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements. XRD patterns and AFM showed that the as-grown and the annealed ZnO films grown on LiNbO3 substrates had c-axis preferential orientation, the crystallinity of the ZnO films grown on LiNbO3 Substrates was improved, and the grain size increased by annealing. The PL spectra showed that the intensity of the UV near-band-edge peak was increased after annealing, while the intensity of visible peak (deep-level emission) decreased. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were grown on the beta-Ga2O3 (100) substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) indicated that the ZnO films are c-axis oriented. The optical and electrical properties of the films were investigated. The room temperature Photoluminescence (PL) spectrum showed a near band emission at 3.28 eV with two deep level emissions. Optical absorption indicated a visible exciton absorption at room temperature. The as-grown films had good electrical properties with the resistivities as low as 0.02 Omega cm at room temperature. Thus, beta-Ga2O3 (100) substrate is shown to be a suitable substrate for fabricating ZnO film. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of beta barium borate have been prepared by liquid phase epitaxy on Si2+-doped alpha-BaB2O4 (alpha-BBO, the high temperature phase of barium berate) (001) and (110) substrates. The results of X-ray diffraction indicate that the films show highly (001) preferred orientation on (001)-oriented substrates while the films grown on (110) substrates are textured with (140) orientation. The crystallinity of these films was found to depend on growth temperature, rotation rate, dip time and orientation of substrate. Growth conditions were optimized to grow films with (001) orientation on (001) substrates reproducibly. The films show second harmonic generation of 400 nm light upon irradiation with 800 nm Ti: Sapphire femtosecond laser light. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About Phi 45 mm LiAlO2 single crystal was grown by Czochralski (Cz) technique. However, the full-width at half-maximum (FWHM) value was high to 116.9 arcsec. After three vapor transport equilibration (VTE) processes, we can obtain high-quality LiAlO2 slice with the FWHM value of 44.2 arcsec. ZnO films were fabricated on as-grown slices and after-VTE ones by pulsed laser deposition (PLD). It was found that ZnO films on the two slices have similar crystallinity, optical transmittance and optical band gap at room temperature. These results not only show that LAO substrate is suitable for ZnO growth, but also prove that the crystal quality of LAO substrate slightly affects the structural and optical properties of ZnO film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO thin films were grown on single-crystal gamma-LiAlO2 (LAO) and sapphire (0001) substrate by pulsed laser deposition (PLD). The structural, optical and electrical properties of ZnO films were investigated. The results show that LAO is more suitable for fabricating ZnO films than sapphire substrate and the highest-quality ZnO film was attained on LAO at the substrate temperature of 550 degrees C. However, when the substrate temperature rises to 700 degrees C, lithium would diffuse from the substrate (LAO) into ZnO film which makes ZnO film on LAO becomes polycrystalline without preferred orientation, the stress in ZnO film increases dominantly and the resistivity of the film decreases exponentially. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO thin films were deposited on the substrates of (100) gamma-LiAlO2 at 400, 550 and 700 degrees C using pulsed laser deposition (PLD) with the fixed oxygen pressure of 20 Pa, respectively. When the substrate temperature is 400 degrees C, the grain size of the film is less than 1 mu m observed by Leitz microscope and measured by X-ray diffraction (XRD). As the substrate temperature increases to 550 degrees C, highly-preferred c-orientation and high-quality ZnO film can be attained. While the substrate temperature rises to 700 degrees C, more defects appears on the surface of film and the ZnO films become polycrystalline again possibly because more Li of the substrate diffused into the ZnO film at high substrate temperature. The photoluminescence (PL) spectra of ZnO films at room temperature show the blue emission peaks centered at 430 nm. We suggest that the blue emission corresponds to the electron transition from the level of interstitial Zn to the valence band. Meanwhile, the films grown on gamma-LiAlO2 (LAO) exhibit green emission centered at 540 nm, which seemed to be ascribed to excess zinc and/or oxygen vacancy in the ZnO films caused by diffusion of Li. from the substrates into the films during the deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical properties for ZnO thin films grown on (100) γ-LiAlO2 (LAO) substrate by pulsed laser deposition method were investigated. The c-axis oriented ZnO films were grown on (100) γ-LiAlO2 substrates at the substrate temperature of 550 Celsius degrees. The transmittance of the films was over 85%. Peaks attributed to excitons were shown in absorption spectra, which indicated that thin films had high crystallinity. Photoluminescence spectra with the maximum peak at 540 nm were observed at room temperature, which seemed to be ascribed to oxygen vacancy in the ZnO films caused by diffusion of Li from the substrates into the films during the deposition.