994 resultados para Euler number, Irreducible symplectic manifold, Lagrangian fibration, Moduli space


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a Lorentzian manifold (M,g), a geodesic gamma in M and a timelike Jacobi field Y along gamma, we introduce a special class of instants along gamma that we call Y-pseudo conjugate (or focal relatively to some initial orthogonal submanifold). We prove that the Y-pseudo conjugate instants form a finite set, and their number equals the Morse index of (a suitable restriction of) the index form. This gives a Riemannian-like Morse index theorem. As special cases of the theory, we will consider geodesics in stationary and static Lorentzian manifolds, where the Jacobi field Y is obtained as the restriction of a globally defined timelike Killing vector field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe several families of Lagrangian submanifolds in complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X be a compact Hausdorff space, Y be a connected topological manifold, f : X -> Y be a map between closed manifolds and a is an element of Y. The vanishing of the Nielsen root number N(f; a) implies that f is homotopic to a root free map h, i.e., h similar to f and h(-1) (a) = empty set. In this paper, we prove an equivariant analog of this result for G-maps between G-spaces where G is a finite group. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denote by R(L, L, L) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdos conjectured that when L is the cycle C(n) on n vertices, R(C(n), C(n), C(n)) = 4n - 3 for every odd n > 3. Luczak proved that if n is odd, then R(C(n), C(n), C(n)) = 4n + o(n), as n -> infinity, and Kohayakawa, Simonovits and Skokan confirmed the Bondy-Erdos conjecture for all sufficiently large values of n. Figaj and Luczak determined an asymptotic result for the `complementary` case where the cycles are even: they showed that for even n, we have R(C(n), C(n), C(n)) = 2n + o(n), as n -> infinity. In this paper, we prove that there exists n I such that for every even n >= n(1), R(C(n), C(n), C(n)) = 2n. (C) 2009 Elsevier Inc. All rights reserved.