Pseudo Focal Points Along Lorentzian Geodesics and Morse Index
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
Given a Lorentzian manifold (M,g), a geodesic gamma in M and a timelike Jacobi field Y along gamma, we introduce a special class of instants along gamma that we call Y-pseudo conjugate (or focal relatively to some initial orthogonal submanifold). We prove that the Y-pseudo conjugate instants form a finite set, and their number equals the Morse index of (a suitable restriction of) the index form. This gives a Riemannian-like Morse index theorem. As special cases of the theory, we will consider geodesics in stationary and static Lorentzian manifolds, where the Jacobi field Y is obtained as the restriction of a globally defined timelike Killing vector field. Regional Junta Andalucia Regional Junta Andalucia[P06-FQM-01951] Fundacion Seneca[04540/GERM/06] Fundacion Seneca Spanish MEC Spanish MEC[MTM2007-64504] M.I.U.R. M.I.U.R.[PRIN07] Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Capes, Brazil[BEX 1509/08-0] |
Identificador |
ADVANCED NONLINEAR STUDIES, v.10, n.1, p.53-82, 2010 1536-1365 |
Idioma(s) |
eng |
Publicador |
ADVANCED NONLINEAR STUDIES, INC |
Relação |
Advanced Nonlinear Studies |
Direitos |
closedAccess Copyright ADVANCED NONLINEAR STUDIES, INC |
Palavras-Chave | #Geodesics #Lorentzian manifolds #Morse index theorem #SEMI-RIEMANNIAN GEOMETRY #CONJUGATE-POINTS #THEOREM #MANIFOLDS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |