994 resultados para raggi X, rivelatore, fluenza, simulazione, spettro
Resumo:
The valence band offset (VBO) of InN/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 0.55 +/- 0.23 eV and the conduction band offset is deduced to be -2.01 +/- 0.23 eV, indicating that the heterojunction has a type-I band alignment. The accurate determination of the valence and conduction band offsets is important for applications of InN/SiC optoelectronic devices.
Resumo:
In this article, a simple and flexible electron-beam coevaporation (EBCE) technique has been reported of fabrication of the silicon nanocrystals (Si NCs) and their application to the nonvolatile memory. For EBCE, the Si and SiOx(x=1 or 2) were used as source materials. Transmission electron microscopy images and Raman spectra measurement verified the formation of the Si NCs. The average size and area density of the Si NCs can be adjusted by increasing the Si:O weight ratio in source material, which has a great impact on the crystalline volume fraction of the deposited film and on the charge storage characteristics of the Si NCs. A memory window as large as 6.6 V under +/- 8 V sweep voltage was observed for the metal-oxide-semiconductor capacitor structure with the embedded Si NCs.
Resumo:
High-quality Ge film was epitaxially grown on silicon on insulator using the ultrahigh vacuum chemical vapor deposition. In this paper, we demonstrated that the efficient 1 4 germanium-on-silicon p-i-n photodetector arrays with 1.0 mu m Ge film had a responsivity as high as 0.65 A/W at 1.31 mu m and 0.32 A/W at 1.55 mu m, respectively. The dark current density was about 0.75 mA/cm(2) at 0 V and 13.9 mA/cm(2) at 1.0 V reverse bias. The detectors with a diameter of 25 mu m were measured at 1550 nm incident light under 0 V bias, and the result showed that the 3-dB bandwidth is 2.48 GHz. At a reverse bias of 3 V, the bandwidth is about 13.3 GHz. The four devices showed a good consistency.
Determination of the tilt and twist angles of curved GaN layers by high-resolution x-ray diffraction
Resumo:
The full-width at half-maximum (FWHM) of an x-ray rocking curve (XRC) has been used as a parameter to determine the tilt and twist angles of GaN layers. Nevertheless, when the thickness of GaN epilayer reaches several microns, the peak broadening due to curvature becomes non-negligible. In this paper, using the (0 0 l), l = 2, 4, 6, XRC to minimize the effects of wafer curvature was studied systematically. Also the method to determine the tilt angle of a curved GaN layer was proposed while the Williamson-Hall plot was unsuitable. It was found that the (0 0 6) XRC-FWHM had a significant advantage for high-quality GaN layers with the radius curvature of r less than 3.5 m. Furthermore, an extrapolating method of gaining a reliable tilt angle has also been proposed, with which the calculated error can be improved by 10% for r < 2 m crystals compared with the (0 0 6) XRC-FWHM. In skew geometry, we have demonstrated that the twist angles deriving from the (2 0 4) XRC-FWHM are in accord with those from the grazing incidence in-plane diffraction (IP-GID) method for significantly curved samples.
Resumo:
We investigate theoretically the Dyakonov-Perel spin relaxation time by solving the eight-band Kane model and Poisson equation self-consistently. Our results show distinct behavior with the single-band model due to the anomalous spin-orbit interactions in narrow band-gap semiconductors, and agree well with the experiment values reported in recent experiment [K. L. Litvinenko et al., New J. Phys. 8, 49 (2006)]. We find a strong resonant enhancement of the spin relaxation time appears for spin align along [1 (1) over bar0] at a certain electron density at 4 K. This resonant peak is smeared out with increasing the temperature.
Resumo:
Decoherence properties of two Josephson charge qubits coupled via the sigma(x)sigma(x) type are investigated. Considering the special structure of this new design, the dissipative effects arising from the circuit impedance providing the fluxes for the qubits' superconducting quantum interference device loops coupled to the sigma(x) qubit variables are considered. The results show that the overall decoherence effects are significantly strong in this qubit design. It is found that the dissipative effects are stronger in the case of coupling to two uncorrelated baths than are found in the case of one common bath.
Resumo:
A 2 x 2 thermo-optic (TO) Mach-Zehnder (MZ) switch based on silicon waveguides with large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. The multi-mode interferometers (MMI) were used as power splitter and combiner in MZ structure. In order to get smooth interface, anisotropy chemical wet-etching of silicon was used to fabricate the waveguides instead of dry-etching. Additional grooves were introduced to reduce power consumption. The device has a low switching power of 235 mW and a switching speed of 60 mus. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A stoichiometric Gd2O3-x thin film has been grown on a silicon (10 0) substrate with a low-energy dual ion-beam epitaxial technique. Gd2O3-x shares Gd2O3 structures although there are many oxygen deficiencies in the film. The photoluminescence (PL) measurements have been performed in a temperature range 5-300 K. The detailed characters of the peak position, the full-width at half-maximum (FWHM) and the peak intensity at different temperature were reported. An anomalous intensity behavior of the PL spectra has been observed, which is similar to that of some other materials such as porous silicon and silicon nanocrystals in silicon dioxide. Therefore, we suggest that the nanoclusters with the oxygen deficiencies contribute to the PL emission and employ the model of singlet-triplet exchange splitting of exciton to discuss the four peaks observed in the experiment. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The YCo5.0-xMnxGa7.0 compounds crystallize with the ScFe6Ga6-type structure. The lattice of YCo5.0-xMnxGa7.0 expands with the increase of the Mn content for 0.05 <= x <= 2.5, but the lattice of YCo2.0Mn3.0Ga7.0 shrinks compared with YCo2.5Mn2.5Ga7.0. The shrinkage of the lattice is attributed to the magnetostriction of YCo2.0Mn3.0Ga7.0. The substitution of Mn for Co forms magnetic clusters in the antiferromagnetic matrix. The magnetic frustration results in the spin-glass-like behavior for 0.8 <= x <= 1.5 and the difference between zero-field-cooling (ZFC) and field-cooling (FC) magnetizations for x = 2.0, 2.5, and 3.0. A stable long-range magnetic ordering appears among the Mn-centered magnetic clusters with the ordering temperature 110 K for x = 2.0. The hump in the thermomagnetization of YCo3.0Mn2.0Ga7.0 can be attributed to the competitive effects between the thermal fluctuation and the enhanced magnetic interaction. Both the hump and the bifurcation between the ZFC and the FC magnetizations of YCo3.0Mn2.0Ga7.0 occur at lower temperatures as the applied field increases. On the two-step magnetization curve of YCo3.0Mn2.0Ga7.0, the inflection point at 4000 Oe is due to the coercive field, and the magnetic moments in the clusters are tilted to the applied field above 4000 Oe. The magnetic ordering temperature is further increased to 210 K for x = 2.5 and to 282 K for x = 3.0. The spontaneous magnetization of YCo2.0Mn3.0Ga7.0 is 0.575 mu B/f.u. at 5 K with a canted magnetic structure.
Resumo:
A rearrangeable nonblocking thermo-optic 4 x 4 switching matrix is demonstrated. The matrix, which consists of five 2 x 2 multimode interference-based Mach-Zehnder interferometer (MMI-MZI) switch elements, is fabricated in silicon-on-insulator waveguide system. The average excess loss for the optical path experiencing 2 and 3 switch elements is 6.6 and 10.1 dB respectively. The crosstalk in the matrix is measured to be between -12 and -19 dB. The switching time of the device is less than 30 mu s.
Resumo:
The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed that the Mn ions were successfully implanted into GaSb substrate. Clear double-crystal X-ray diffraction patterns of the Ga1-xMnxSb samples indicate that the Ga1-xMnxSb epilayers have the zinc-blende structure without detectable second phase. Magnetic hysteresis-loop of the Ga1-xMnxSb epilayers were obtained at room temperature (293 K) with alternating gradient magnetometry. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45&DEG; tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.
Resumo:
A set of GaNxAs1-x samples with a small content of nitrogen (N) (< 1%) were investigated by continuous-wave photoluminescence (PL), pulse-wave excitation PL, and photo reflectance technology. Temperature-and excitation-dependence of PL disclosed the intrinsic band gap properties of alloy states in GaNxAs1-x, which was extremely different from the N-related impurity states. At the same time, PR spectra were also studied in this work.
Resumo:
Molecular beam epitaxy (MBE) growth of (InyGa1-yAs/GaAs1-xSbx)/GaAs bilayer quantum well (BQW) structures has been investigated. It is evidenced by photo luminescence (PL) that a strong blue shift of the PL peak energy of 47 meV with increasing PL excitation power from 0.63 to 20 mW was observed, indicating type II band alignment of the BQW. The emission wavelength at room temperature from (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW is longer (above 1.2 μ m) than that from InGaAs/GaAs and GaAsSb/GaAs SQW structures (1.1 μ m range), while the emission efficiency from the BQW structures is comparable to that of the SQW. Through optimizing growth conditions, we have obtained room temperature 1.31 μ m wavelength emission from the (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW. Our results have proved experimentally that the GaAs-based bilayer (InyGa1-yAs/GaAs1-xSbx)/GaAs quantum well is a useful structure for the fabrication of near-infrared wavelength optoelectronic devices. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.