993 resultados para generating functions
Resumo:
Techniques devoted to generating triangular meshes from intensity images either take as input a segmented image or generate a mesh without distinguishing individual structures contained in the image. These facts may cause difficulties in using such techniques in some applications, such as numerical simulations. In this work we reformulate a previously developed technique for mesh generation from intensity images called Imesh. This reformulation makes Imesh more versatile due to an unified framework that allows an easy change of refinement metric, rendering it effective for constructing meshes for applications with varied requirements, such as numerical simulation and image modeling. Furthermore, a deeper study about the point insertion problem and the development of geometrical criterion for segmentation is also reported in this paper. Meshes with theoretical guarantee of quality can also be obtained for each individual image structure as a post-processing step, a characteristic not usually found in other methods. The tests demonstrate the flexibility and the effectiveness of the approach.
Resumo:
We present a complete description of the analytic properties of the Barnes double zeta and Gamma functions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In the present paper we obtain a new homological version of the implicit function theorem and some versions of the Darboux theorem. Such results are proved for continuous maps on topological manifolds. As a consequence. some versions of these classic theorems are proved when we consider differenciable (not necessarily C-1) maps.
Resumo:
We propose a new technique to analyze total reaction cross sections. In this technique, which has been previously applied to fusion reactions, the experimental data are used to build a dimensionless reaction function, which does not depend oil the system size or details of the optical potential. In this way, total reaction cross sections for different systems can be directly compared. We employ this technique to perform a systematic study of reaction cross sections of weakly bound systems in different mass ranges, and compare their reaction functions with the ones of tightly bound systems with similar masses. We show that breakup reactions and neutron transfers in halo systems lead to large reaction functions, well above the ones of typical tightly or weakly bound stable systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner`s ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincar, group G. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group I =GxG. All such transformations can be studied by considering a generalized regular representation of G in the space of scalar functions on the group, f(x,z), that depend on the Minkowski space points xaG/Spin(3,1) as well as on the orientation variables given by the elements z of a matrix ZaSpin(3,1). In particular, the field f(x,z) is a generating function of the usual spin-tensor multi-component fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties.
Resumo:
Explicitly orbital-dependent approximations to the exchange-correlation energy functional of density functional theory typically not only depend on the single-particle Kohn-Sham orbitals but also on their occupation numbers in the ground-state Slater determinant. The variational calculation of the corresponding exchange-correlation potentials with the optimized effective potential (OEP) method therefore also requires a variation of the occupation numbers with respect to a variation in the effective single-particle potential, which is usually not taken into account. Here it is shown under which circumstances this procedure is justified.
Resumo:
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bouhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH(2) (RGE) and IVYYPDRGETGL-NH(2) (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new framework for generating triangular meshes from textured color images. The proposed framework combines a texture classification technique, called W-operator, with Imesh, a method originally conceived to generate simplicial meshes from gray scale images. An extension of W-operators to handle textured color images is proposed, which employs a combination of RGB and HSV channels and Sequential Floating Forward Search guided by mean conditional entropy criterion to extract features from the training data. The W-operator is built into the local error estimation used by Imesh to choose the mesh vertices. Furthermore, the W-operator also enables to assign a label to the triangles during the mesh construction, thus allowing to obtain a segmented mesh at the end of the process. The presented results show that the combination of W-operators with Imesh gives rise to a texture classification-based triangle mesh generation framework that outperforms pixel based methods. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
Resumo:
In this work we study, in the framework of Colombeau`s generalized functions, the Hamilton-Jacobi equation with a given initial condition. We have obtained theorems on existence of solutions and in some cases uniqueness. Our technique is adapted from the classical method of characteristics with a wide use of generalized functions. We were led also to obtain some general results on invertibility and also on ordinary differential equations of such generalized functions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight omega(1) < 2(omega) such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.
Resumo:
We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of (K) over bar and introduce several invariants of the ideals of 9(Q). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become Cl-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.
Resumo:
We develop and describe continuous and discrete transforms of class functions on a compact semisimple, but not simple, Lie group G as their expansions into series of special functions that are invariant under the action of the even subgroup of the Weyl group of G. We distinguish two cases of even Weyl groups-one is the direct product of even Weyl groups of simple components of G and the second is the full even Weyl group of G. The problem is rather simple in two dimensions. It is much richer in dimensions greater than two-we describe in detail E-transforms of semisimple Lie groups of rank 3.
Resumo:
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.