1000 resultados para DEPENDENT PHOTOLUMINESCENCE
Resumo:
ZnS1-xTex (0.02less than or equal toxless than or equal to0.3) alloys are studied by photoluminescence under hydrostatic pressure at room temperature. Only a wide emission band is observed for each sample. Its peak energy is much lower than the corresponding band gap of alloys. These bands are ascribed to the radiative annihilation of excitons bound at Te-n(ngreater than or equal to2) isoelectronic centers. The pressure coefficients of the emission bands are smaller than those of alloy band gaps from 48% to 7%. The difference of the pressure coefficient of the emission band and the band gap increases when the binding energy of Te-n centers decreases. It seems contrary to our expectation and needs further analysis. The integrated intensities of emission bands decrease with increasing pressure due to the decreasing of the absorption coefficient associated with the Te-n centers under pressure. According to this model the Stokes shifts between the emission and absorption bands of the Te-n centers are calculated, which decrease with the increasing Te composition in alloys.
Resumo:
We investigated the effects of concomitant In- and N-incorporation on the photoluminescence (PL) of GaInNAs grown by molecular beam epitaxy. In comparison with the N-free GaInAs epilayer, the PL spectra of the GaInNAs epilayer exhibit an anomalous S-shape temperature dependence of dominant luminescence peak. Through further careful inspection, two PL peaks are clearly discerned and are associated with the interband excitonic recombinations and excitons bound to N-induced isoelectronic impurity states, respectively. By comparing the PL spectra of GaInNAs/ GaAs quantum wells (QWs) with those of In-free GaNAs/GaAs QWs grown under similar conditions, it is found that the concomitant In- and N-incorporation reduces the density of impurities and has an effect to improve the intrinsic optical transition of GaInNAs, but also enhance the N-induced clustering effects. At last, we found that rapid thermal annealing can significantly reduce the density of N-induced impurities. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells grown on a GaAs substrate by molecular beam epitaxy are measured in a range of temperatures and excitation power densities. The energy position of the dominant PL peak shows an anomalous S-shape temperature dependence instead of the Varshni relation. By careful inspection, especially for the PL under lower excitation power density, two near bandedge peaks are well identified. These are assigned to carriers localized in nitrogen-induced bound states and interband excitonic recombinations, respectively. It is suggested that the temperature-induced switch of such two luminescence peaks in relative intensity causes a significant mechanism responsible for the S-shape shift observed in GaInNAs. A quantitative model based on the thermal depopulation of carriers is used to explain the temperature dependence of the PL peak related to N-induced bound states.
Resumo:
Characteristics of a 1.3-mum GaInNAs RCE PD with respect to the incident light angle were analyzed both in theoretical simulation and experiments. The results show the influence can be neglected when the light incidence angle is less than 3degrees. This is a requirement for the PD to be applied in WDM networks. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.
Resumo:
We have investigated the photoluminescence mapping characteristics of semi-insulating (SI) InP wafers obtained by annealing in iron phosphide ambience (FeP2-annealed). Compared with as-grown Fe-doped and undoped SI InP wafers prepared by annealing in pure phosphorus vapour (P-annealed), the FeP2-annealed ST InP wafer has been found to exhibit a better photoluminescence uniformity. Radial Hall measurements also show that there is a better resistivity uniformity on the FeP2-annealed Sl InP wafer. When comparing the distribution of deep levels between the annealed wafers measured by optical transient Current spectroscopy, we find that the incorporation of iron atoms into the Sl InP Suppresses the formation of a few defects. The correlation observed in this study implies that annealing in iron phosphorus ambience makes Fe atoms diffuse uniformly and occupy the indium site in the Sl InP lattice. As it stands, we believe that annealing undoped conductive InP in iron phosphide vapour is an effective means to obtain semi-insulating InP wafers with superior uniformity.
Resumo:
We have fabricated a quantum dot (QD) structure for long-wavelength temperature-insensitive semiconductor laser by introducing a combined InAlAs and InGaAs overgrowth layer on InAs/GaAs QDs. We found that QDs formed on GaAs (100) substrate by InAs deposition followed by the InAlAs and InGaAs combination layer demonstrate two effects: one is the photoluminescence peak redshift towards 1.35 mum at room temperature, the other is that the energy separation between the ground and first excited states can be up to 103 meV. These results are attributed to the fact that InAs/GaAs intermixing caused by In segregation at substrate temperature of 520 degreesC can be considerably suppressed by the thin InAlAs layer and the strain in the quantum dots can be reduced by the combined InAlAs and InGaAs layer. (C) 2002 American Institute of Physics.
Resumo:
Behaviors of the photoluminescence blue-band and near-bandgap peak and the relevant thermal ionization energies of the shallow and deep Mg-related acceptors have been studied, respectively. The 2.989 eV blue-band is attributed to the deep donor-acceptor-pair transitions involving a deep Mg-related acceptor at E-v+0.427 eV. The blueshift with increasing excitation power is explained by variation in the contribution of close and distant donor-acceptor-pairs to the luminescence. The redshift with increasing temperature results from thermal release of carriers from close donor-acceptor-pairs. The 3.26 eV near-bandgap peak is attributed to the shallow donor-acceptor-pair transitions involving a shallow Mg-related acceptor at E-v+0.223 eV. The relevant thermal ionization energies of the shallow and deep Mg-related acceptors, being about E-v+0.16 and E-v+0.50eV, are determined from deep-level transient Fourier spectroscopy measurements.
Resumo:
Positron lifetime, photoluminescence (PL), and Hall measurements were performed to study undoped p-type gallium antimonide materials. A 314 ps positron lifetime component was attributed to Ga vacancy (V-Ga) related defect. Isochronal annealing studies showed at 300 degreesC annealing, the 314 ps positron lifetime component and the two observed PL signals (777 and 797 meV) disappeared, which gave clear and strong evidence for their correlation. However, the hole concentration (similar to2x10(17) cm(-3)) was observed to be independent of the annealing temperature. Although the residual acceptor is generally related to the V-Ga defect, at least for cases with annealing temperatures above 300 degreesC, V-Ga is not the acceptor responsible for the p-type conduction. (C) 2002 American Institute of Physics.
Resumo:
Monodispersed ZnS and Eu3+-doped ZnS nanocrystals have been prepared through the co-precipitation reaction of inorganic precursors ZnCl2, EuCl3, and Na2S in a water/methanol binary solution. The mean particle sizes are about 3-5 nm. The structures of the as-prepared ZnS nanoparticles are cubic (zinc blende) as demonstrated by an x-ray powder diffraction. Photoluminescence studies showed a stable room temperature emission in the visible spectrum region for all the samples, with a broadening in the emission band and, in particular, a partially overlapped twin peak in the Eu3+-doped ZnS nanocrystals. The experimental results also indicated that Eu3+-doped ZnS nanocrystals, prepared by controlling synthetic conditions, were stable. (C) 2002 American Institute of Physics.
Resumo:
Photoluminescence (PL) was investigated in undoped GaN from 4.8 K to room temperature. The 4.8 K spectra exhibited recombinations of free exciton, donor-acceptor pair (DAP), blue and yellow bands (Ybs). The blue band (BB) was also identified to be a DAP recombination. The YB was assigned to a recombination from deep levels. The energy-dispersive X-ray spectroscopy show that C and O are the main residual impurities in undoped GaN and that C concentration is lower in the epilayers with the stronger BB. The electronic structures of native defects, C and O impurities, and their complexes were calculated using ab initio local-density-functional (LDF) methods with linear muffin-tin-orbital and 72-atomic supercell. The theoretical analyses suggest that the electron transitions from O-N states to C-N and to V-Ga states are responsible for DAP and the BB, respectively, and the electron transitions between the inner levels of the C-N-O-N complex may be responsible for the YB in our samples. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The temperature dependence of photoluminescence (PL) from a-C:H film deposited by CH3+ ion beam has been performed and an anomalous behavior has been reported. A transition temperature at which the PL intensity, peak position and full width at the half maximum change sharply was observed. It is proposed that different structure units. at least three, are responsible for such behavior. Above the transition point. increasing temperature will lead to the dominance of non-radiative recombination process, which quenches the PL overall and preferentially the red part, Possible emission mechanisms have been discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The photoluminescence (PL) of ZnSe0.92TeD0.08/ZnSe superlattice quantum wells at 77K under hydrostatic pressure up to 7.8 GPa was studied. Strong PL peaks from excitons trapped in isoelectronic traps in ZnSe0.92Te0.08 were observed. It was found that the pressure coefficients of the PL, peaks from Te traps are about half of that of ZnSe. It demonstrates the localized characteristic of the potential of Te isoelectronic. traps. The excitons transition between Te traps in ZnSe1 Te-- x(x) and (CdSe)(1) /(ZnSe)(3) superlattice was also investigated.
Resumo:
Micrometer-sized spherical glass microspheres were fabricated. CdSeS semiconductor nanometer clusters were incorporated into spherical microcavities. When a single microsphere was excited by a laser beam, the whispering gallery mode resonance of the photoluminescence of CdSeS quantum dots in the spherical microcavities was realized by the multiple total internal reflections at the spherical interface. The coupling of restricted electronic and photonic states was realized.
Resumo:
In our recent report, [Xu , Appl. Phys. Lett. 76, 152 (2000)], profile distributions of five elements in the GaN/sapphire system have been obtained using secondary ion-mass spectroscopy. The results suggested that a thin degenerate n(+) layer at the interface is the main source of the n-type conductivity for the whole film. The further studies in this article show that this n(+) conductivity is not only from the contribution of nitride-site oxygen (O-N), but also from the gallium-site silicon (Si-Ga) donors, with activation energies 2 meV (for O-N) and 42 meV (for Si-Ga), respectively. On the other hand, Al incorporated on the Ga sublattice reduces the concentration of compensating Ga-vacancy acceptors. The two-donor two-layer conduction, including Hall carrier concentration and mobility, has been modeled by separating the GaN film into a thin interface layer and a main bulk layer of the GaN film. The bulk layer conductivity is to be found mainly from a near-surface thin layer and is temperature dependent. Si-Ga and O-N should also be shallow donors and V-Ga-O or V-Ga-Al should be compensation sites in the bulk layer. The best fits for the Hall mobility and the Hall concentration in the bulk layer were obtained by taking the acceptor concentration N-A=1.8x10(17) cm(-3), the second donor concentration N-D2=1.0x10(18) cm(-3), and the compensation ratio C=N-A/N-D1=0.6, which is consistent with Rode's theory. Saturation of carriers and the low value of carrier mobility at low temperature can also be well explained. (C) 2001 American Institute of Physics.