994 resultados para 290900 Electrical and Electronic Engineering
Resumo:
Artifact removal from physiological signals is an essential component of the biosignal processing pipeline. The need for powerful and robust methods for this process has become particularly acute as healthcare technology deployment undergoes transition from the current hospital-centric setting toward a wearable and ubiquitous monitoring environment. Currently, determining the relative efficacy and performance of the multiple artifact removal techniques available on real world data can be problematic, due to incomplete information on the uncorrupted desired signal. The majority of techniques are presently evaluated using simulated data, and therefore, the quality of the conclusions is contingent on the fidelity of the model used. Consequently, in the biomedical signal processing community, there is considerable focus on the generation and validation of appropriate signal models for use in artifact suppression. Most approaches rely on mathematical models which capture suitable approximations to the signal dynamics or underlying physiology and, therefore, introduce some uncertainty to subsequent predictions of algorithm performance. This paper describes a more empirical approach to the modeling of the desired signal that we demonstrate for functional brain monitoring tasks which allows for the procurement of a ground truth signal which is highly correlated to a true desired signal that has been contaminated with artifacts. The availability of this ground truth, together with the corrupted signal, can then aid in determining the efficacy of selected artifact removal techniques. A number of commonly implemented artifact removal techniques were evaluated using the described methodology to validate the proposed novel test platform. © 2012 IEEE.
Resumo:
A cyberwar exists between malware writers and antimalware researchers. At this war's heart rages a weapons race that originated in the 80s with the first computer virus. Obfuscation is one of the latest strategies to camouflage the telltale signs of malware, undermine antimalware software, and thwart malware analysis. Malware writers use packers, polymorphic techniques, and metamorphic techniques to evade intrusion detection systems. The need exists for new antimalware approaches that focus on what malware is doing rather than how it's doing it.
Resumo:
In this paper, the reliability and thus the suitability of optical fibre strain sensors for surface strain measurement in concrete structures was investigated. Two different configurations of optical strain sensors were used each having different mountings making them suitable for different uses in various structures. Due to the very limited time available to install the sensors and take result, commercially packaged sensors were used. In the tests carried out each sensor was mounted onto a concrete beam which was then subjected to a range of known and calibrated loadings. The performance of the optical strain sensors thus evaluated was compared with the results of conventional techniques. This comparison allows for selecting the best performing combination of sensor/mounting, i.e. long-gauge sensor with mounts bolted to threaded rods glued into the concrete for use in future work in a field test where a limited time window was available for installation, testing and post-test demounting. © 2012 Elsevier B.V.
Resumo:
In this paper, characterizing transmission losses according to their origin is carried out. Transmission loss is decomposed into three components. The first is due to the current flow from generators to loads. The second is due to the circulating current between generators. The third represents the contribution of network structure and controls to increasing or decreasing transmission losses. Analytical proofs of the proposed loss decomposition are presented along with methods of allocating each component to the parties contributing to it. Illustration on simple dc and ac systems is presented. Results of application of the proposed method compared with other methods are also presented.
Resumo:
Methods are presented for developing synthesizable FFT cores. These are based on a modular approach in which parameterized commutator and processor blocks are cascaded to implement the computations required in many important FFT signal flow graphs. In addition, it is shown how the use of a digital serial data organization can be used to produce systems that offer 100% processor utilization along with reductions in storage requirements. The approach has been used to create generators for the automated synthesis of FFT cores that are portable across a broad range of silicon technologies. Resulting chip designs are competitive with ones created using manual methods but with significant reductions in design times.
Resumo:
In this paper, a novel configurable content addressable memory (CCAM) cell is proposed, to increase the flexibility of embedded CAMs for SoC employment. It can be easily configured as a Binary CAM (BiCAM) or Ternary CAM (TCAM) without significant penalty of power consumption or searching speed. A 64x128 CCAM array has been built and verified through simulation. ©2007 IEEE.
Resumo:
DDR-SDRAM based data lookup techniques are evolving into a core technology for packet lookup applications for data network, benefitting from the features of high density, high bandwidth and low price of DDR memory products in the market. Our proposed DDR-SDRAM based lookup circuit is capable of achieving IP header lookup for network line-rates of up to 10Gbps, providing a solution on high-performance and economic packet header inspections. ©2008 IEEE.
Resumo:
The design of a System-on-a-Chip (SoC) demonstrator for a baseline JPEG encoder core is presented. This combines a highly optimized Discrete Cosine Transform (DCT) and quantization unit with an entropy coder which has been realized using off-the-shelf synthesizable IP cores (Run-length coder, Huffman coder and data packer). When synthesized in a 0.35 µm CMOS process, the core can operate at speeds up to 100 MHz and contains 50 k gates plus 11.5 kbits of RAM. This is approximately 20% less than similar JPEG encoder designs reported in literature. When targeted at FPGA the core can operate up to 30 MHz and is capable of compressing 9-bit full-frame color input data at NTSC or PAL rates.
Resumo:
A generator for the automated design of Discrete Cosine Transform (DCT) cores is presented. This can be used to rapidly create silicon circuits from a high level specification. These compare very favourably with existing designs. The DCT cores produced are scaleable in terms of point size as well as input/output and coefficient wordlengths. This provides a high degree of flexibility. An example, 8-point 1D DCT design, produced occupies less than 0.92 mm when implemented in a 0.35µ double level metal CMOS technology. This can be clocked at a rate of 100MHz.
Resumo:
A novel hardware architecture for elliptic curve cryptography (ECC) over GF(p) is introduced. This can perform the main prime field arithmetic functions needed in these cryptosystems including modular inversion and multiplication. This is based on a new unified modular inversion algorithm that offers considerable improvement over previous ECC techniques that use Fermat's Little Theorem for this operation. The processor described uses a full-word multiplier which requires much fewer clock cycles than previous methods, while still maintaining a competitive critical path delay. The benefits of the approach have been demonstrated by utilizing these techniques to create a field-programmable gate array (FPGA) design. This can perform a 256-bit prime field scalar point multiplication in 3.86 ms, the fastest FPGA time reported to date. The ECC architecture described can also perform four different types of modular inversion, making it suitable for use in many different ECC applications. © 2006 IEEE.