988 resultados para molecule reactions
Resumo:
Novel nucleoside analogues containing photoswitchable moieties were prepared using 'click' cycloaddition reactions between 5 '-azido-5 '-deoxythymidine and mono- or bis-N-propargylamide-substituted azobenzenes. In solution, high to quantitative yields were achieved using 5mol% Cu(I) in the presence of a stabilizing ligand. 'Click' reactions using the monopropargylamides were also effected in the absence of added cuprous salts by the application of liquid assisted grinding (LAG) in metallic copper reaction vials. Specifically, high speed vibration ball milling (HSVBM) using a 3/32('') (2.38mm) diameter copper ball (62mg) at 60Hz overnight in the presence of ethyl acetate lead to complete consumption of the 5 '-azido nucleoside with clean conversion to the corresponding 1,3-triazole.
Resumo:
The activation of oxygen molecules is an important issue in the gold-catalyzed partial oxidation of alcohols in aqueous solution. The complexity of the solution arising from a large number of solvent molecules makes it difficult to study the reaction in the system. In this work, O-2 activation on an Au catalyst is investigated using an effective approach to estimate the reaction barriers in the presence of solvent. Our calculations show that O-2 can be activated, undergoing OOH* in the presence of water molecules. The OOH* can readily be formed on Au(211) via four possible pathways with almost equivalent free energy barriers at the aqueous-solid interface: the direct or indirect activation of O-2 by surface hydrogen or the hydrolysis of O-2 following a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. Among them, the Eley-Rideal mechanism may be slightly more favorable due to the restriction of the low coverage of surface H on Au(211) in the other mechanisms. The results shed light on the importance of water molecules on the activation of oxygen in gold-catalyzed systems. Solvent is found to facilitate the oxygen activation process mainly by offering extra electrons and stabilizing the transition states. A correlation between the energy barrier and the negative charge of the reaction center is found. The activation barrier is substantially reduced by the aqueous environment, in which the first solvation shell plays the most important role in the barrier reduction. Our approach may be useful for estimating the reaction barriers in aqueous systems.
Resumo:
The August 2011 riots in England occasioned widespread condemnation from government and the media. Here, we apply the concepts of hypocrisy and affiliation to explore reactions to these riots. Initially acknowledging that politics necessitates a degree of hypocrisy, we note that some forms of hypocrisy are indefensible: they compromise injavascript:void(0);tegrity. With rioters condemned as thugs and members of a feral underclass, some reactions exemplified forms of corrosive hypocrisy that deflected attention away from economic, social and cultural problems. Moreover, such reactions omitted to attend to the concept of [dis]affiliation amongst young rioters. Accordingly, we look to the role that education might play in re-affiliating those who do not feel they belong to, or have a sufficient stake in, society. Whilst our focus is on the riots in England, the exploration of hypocrisy and affiliation, and discussion of education for re-affiliation, transcends that national context.
Resumo:
In this Letter, an unambiguous synthetic strategy is reported for the preparation of enantiomerically purecis-5-halo-piperazic acid derivatives in single diastereoisomer form. Contrary to the recent report by Shin and co-workers (Chem. Lett. 2001, 1172), in which it is claimed that the Ph3P and N-chlorosuccinimide (NCS)-mediated chlorination of (3R,5S)-trans-N(1),N(2)-di-t-Boc-5-hydroxy-piperazic acid derivative 1proceeds with retention of configuration at C(5) to give 2, we now show that this and related Ph3P-mediated halogenations all occur with SN2 inversion at the alcohol center, as is customary for such reactions. Specifically, we demonstrate that the (3R,5S)-trans-5-Cl-piperazic acid derivative 2 claimed by Shin and co-workers (Chem. Lett. 2001, 1172) is in actual fact the chlorinated (3S,5R)-enantiomer 6, which must have been prepared from the cis-(3S,5S)-alcohol 3, a molecule whose synthesis is not formally described in the Shin paper. We further show here that the cis-(3R,5R)-5-Cl-Piz 13 claimed by Shin and co-workers inChem. Lett. 2001, 1172, is also (3S,5R)-trans-5-Cl-Piz 6. Authentic 13 has now been synthesized by us, for the very first time, here. Since Lindsley and Kennedy have recently utilized the now invalid Shin and co-workers’ retentive Ph3P/NCS chlorination procedure on 1 in their synthetic approach to piperazimycin A (Tetrahedron Lett. 2010, 51, 2493), it follows that their claimed 5-Cl-Piz-containing dipeptide 25 probably has the alternate structure 26, where the 5-Cl-Piz residue has a 3,5-cis-configuration. The aforementioned stereochemical misassignments appear to have come from a mix-up of starting materials by Shin and co-workers (Chem. Lett. 2001, 1172), and an under-appreciation of the various steric and conformational effects that operate in N(2)-acylated piperazic acid systems, most especially rotameric A1,3-strain. The latter has now been unambiguously delineated and defined here under the banner of the A1,3-rotamer effect.
Resumo:
Thermal reactions proceed optimally when they are rapidly heated to the highest tolerable temperature, held there for the shortest possible time and then quenched. This is explained through assessments of reaction kinetics in literature examples and models. Although presently available microwave equipment is better suited to rapid heating than resistance-heated systems, the findings do not depend upon the method of heating. Claims that microwave heated reactions proceed faster and more cleanly than their conventionally heated counterparts are valid only when comparably rapid heating and cooling cannot be obtained by conventional heating. These findings suggest that rigid adherence to the sixth principle of green chemistry, relating to the use of ambient temperature and pressure, may not always afford optimal results. © 2010 The Royal Society of Chemistry.
Resumo:
A convenient asymmetric total synthesis of the potent HIF-1 inhibitory antitumor natural product, (−)- or (+)-(8R)-mycothiazole (1), is described. Not only does our synthesis confirm the 2006 structural reassignment made by Crews (Crews, P., et al. J. Nat. Prod. 2006, 69, 145), it revises the [α]D data previously reported for this molecule in MeOH from −13.7° to +42.3°. The newly developed route to (8R)-1 sets the C(8)–OH stereocenter via Sharpless AE/2,3-epoxy alcohol reductive ring opening and utilizes two Baldwin–Lee CsF/cat. CuI Stille cross-coupling reactions with vinylstannanes 8 and 3 to efficiently elaborate the C(1)–C(4) and C(14)–C(18) sectors.
Resumo:
This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.
In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.
Resumo:
The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements of this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modelling. Furthermore, some aims and aspirations for further evolution of spatially resolved techniques are considered.
Resumo:
This letter describes the design, development and SAR exploration of a novel series of small legumain inhibitors. The SAR of a new small molecule legumain inhibitor chemotype was explored and found to have improved physiochemical properties compared to previously developed inhibitors within our group. However, further development of this series was found to be limited as the SAR was observed to be relatively flat.
Resumo:
Gene expression connectivity mapping has gained much popularity recently with a number of successful applications in biomedical research testifying its utility and promise. Previously methodological research in connectivity mapping mainly focused on two of the key components in the framework, namely, the reference gene expression profiles and the connectivity mapping algorithms. The other key component in this framework, the query gene signature, has been left to users to construct without much consensus on how this should be done, albeit it has been an issue most relevant to end users. As a key input to the connectivity mapping process, gene signature is crucially important in returning biologically meaningful and relevant results. This paper intends to formulate a standardized procedure for constructing high quality gene signatures from a user’s perspective.
Resumo:
Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.
Resumo:
Tese de dout., Química, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2008
Resumo:
Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014