Evolution and Enabling Capabilities of Spatially Resolved Techniques for the Characterization of Heterogeneously Catalyzed Reactions


Autoria(s): Morgan, Kevin; Touitou, Jamal; Choi, Jae-Soon; Coney, Ciaran; Hardacre, Christopher; Pihl, Josh A.; Stere, Cristina E.; Kim, Mi-Young; Stewart, Caomhan; Goguet, Alexandre; Partridge, William P.
Data(s)

15/01/2016

Resumo

The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements of this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modelling. Furthermore, some aims and aspirations for further evolution of spatially resolved techniques are considered.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/evolution-and-enabling-capabilities-of-spatially-resolved-techniques-for-the-characterization-of-heterogeneously-catalyzed-reactions(463d88f5-dd4c-4678-b951-3ba9b9e8b4ce).html

http://dx.doi.org/10.1021/acscatal.5b02602

http://pure.qub.ac.uk/ws/files/18331660/evolution_and.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Morgan , K , Touitou , J , Choi , J-S , Coney , C , Hardacre , C , Pihl , J A , Stere , C E , Kim , M-Y , Stewart , C , Goguet , A & Partridge , W P 2016 , ' Evolution and Enabling Capabilities of Spatially Resolved Techniques for the Characterization of Heterogeneously Catalyzed Reactions ' ACS Catalysis , vol 6 , no. 2 , pp. 1356-1381 . DOI: 10.1021/acscatal.5b02602

Tipo

article