990 resultados para Weakly coupled lasers
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:15:32Z No. of bitstreams: 1 Large-Signal Performance of 1.3 mu m InAs-GaAs quantum-dot lasers.pdf: 281494 bytes, checksum: 1ebcdfdc887e3a3b279e07b3f655167b (MD5)
Resumo:
The control of the photonic crystal waveguide over the beam profile of vertical-cavity surface-emitting lasers is investigated. The symmetric slab waveguide model is adopted to analyze the control parameters, of the beam profile in the photonic-crystal vertical-cavity surface-emitting laser (PC-VCSEL). The filling factor (the ratio of the hole diameter to the lattice constant) and the etching depth control the divergence angle of the PC-VCSEL, and the low filling factor and the shallow etching depth are beneficial to achieve the low-divergence-angle beam. Two types of PC-VCSELs with different filling factors and etching depths are designed and fabricated. The experimental results show that the device with a lower filling factor and a shallower etching depth has a lower divergence angle, which agrees well with the theoretical predictions.
Resumo:
Phase-locked oxide-confined ring-defect photonic crystal vertical-cavity surface-emitting laser is presented. The coupled-mode theory is employed to illustrate the two supermodes of the device, in-phase and out-of-phase supermode. Experimental results verify the two supermodes by the characteristics of the spectra and the far field patterns. At the lower current, only the out-of-phase supermode is excited, whereas under the higher current, the in-phase supermode also appears at the shorter wavelength range. In addition, the measured spectral separation between the two supermodes agrees well with the theoretical result.
Resumo:
The simulation of a plasmonic very-small-aperture laser is demonstrated in this paper. It is an integration of the surface plasmon structure and very-small-aperture laser (VSAL). The numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field (3.5 mu m far from the emitting surface), and the output power density can be enhanced over 30 times of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope.
Resumo:
Single-frequency output power of 12 W at 1064 nm is demonstrated. Pumped by a fiber-coupled diode laser, the Nd:YVO4 produces 58.6% of the slope efficiency with respect to absorbed pump power, and 52.7% of the optical-optical efficiency and nearly diffraction-limited output with a beam quality parameter of M-2 approximate to 1.11. To the best of our knowledge, this is the highest slope efficiency and optical-optical efficiency in single-frequency Nd:YVO4 ring laser. The slope efficiency of the single frequency laser is close to the limit of the efficiency. [GRAPHICS] output spectrum of the single-frequency Nd:YVO4 ring laser
Resumo:
A Nd:GdVO4 crystal is pumped directly into its emitting level at 913 nm for the first time to the best of our knowledge. 3.35 W output laser emitting at 1063 nm is achieved in a 1.1 at.% Nd-doped Nd:GdVO4. The crystal absorbs pumping light of 4.30 W at 913 nm and produces a very low quantity of heat with the opto-optic conversion efficiency of 77.2%. The average slope efficiency is 81.2% from 0.21 W, at the threshold, to 4.30 W of absorbed pump power. Because of the very weakly thermal effect, the near-diffraction-limit beam is easily obtained with beam quality factor of M-2 approximate to 1.1.
Resumo:
Temperature-dependent modulation characteristics of 1.3 mu m InAs/GaAs quantum dot (QD) lasers under small signals have been carefully studied at various bias currents. Based on experimental observations, it is found that the modulation bandwidth significantly increases when excited state (ES) lasing emerges at high temperature. This is attributed to additional photons emitted by ES lasing which contribute to the modulation response. A rate equation model including two discrete electron energy levels and the level of wetting layer has been used to investigate the temperature-dependent dynamic behavior of the QD lasers. Numerical investigations confirm that the significant jump for the small signal modulation response is indeed caused by ES photons. Furthermore, we identify how the electron occupation probabilities of the two discrete energy levels can influence the photon density of different states and finally the modulation rate. Both experiments and numerical analysis show that the modulation bandwidth of QD lasers at high temperature can be increased by injecting more carriers into the ES that has larger electron state degeneracy and faster carrier's relaxation time than the ground state.
Resumo:
We demonstrate room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers emitting at 4.7 mu m. A rectangular photonic crystal lattice perpendicular to the cleaved facet was defined using holographic lithography. The anticrossing of the index- and Bragg-guided dispersions of rectangular lattice forms the band-edge mode with extended mode volume and reduced group velocity. Utilizing this coupling mechanism, single mode operation with a near-diffractive-limited divergence angle of 12 degrees is obtained for 33 mu m wide devices in a temperature range of 85-300 K. The reduced threshold current densities and improved heat dissipation management contribute to the realization of devices' room temperature operation.
Resumo:
A new evanescently coupled uni-traveling carrier photodiode (EC-UTC-PD) is designed, fabricated and characterized, which incorporates a multimode diluted waveguide structure and UTC active waveguide structure together. A high responsivity of 0.68A/W at 1.55-mu m without an anti-reflection coating, a linear photocurrent responsivity of more than 21 mA, and a large-1 dB vertical alignment tolerance of 2.5 mu m are achieved.
Resumo:
We report the molecular beam epitaxy growth of 1.3 mu m InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T-0. The active region of the lasers consists of five-layer InAs QDs with p-type modulation doping. Devices with a stripe width of 4 mu m and a cavity length of 1200 mu m are fabricated and tested in the pulsed regime under different temperatures. It is found that T-0 of the QD lasers is as high as 532K in the temperature range from 10 degrees C to 60 degrees C. In addition, the aging test for the lasers under continuous wave operation at 100 degrees C for 72 h shows almost no degradation, indicating the high crystal quality of the devices.
Resumo:
An eight-channel monolithically integrated complex-coupled distributed-feedback laser array based on sampled gratings has been designed and fabricated. Selective lasing at different wavelengths is obtained. The frequency separation between each adjacent channel is about 200 GHz. The typical threshold current is between 30 and 40 mA. The optical output power of each channel is about 10 mW at an injection current of 100 mA. The continuous tuning of emission wavelength with injected currents is also demonstrated.
Resumo:
A tapered distributed feedback quantum cascade laser emitting at lambda similar to 8.1 mu m is reported. Utilising a tapered waveguide structure with a surface metal grating, the device exhibited singlemode operation over the temperature range of 100 to 214 K, with sidemode suppression ratio > 20 dB and a nearly diffraction limited far-field beam divergence angle of 5.4 degrees.
Resumo:
We present a study on the facet damage profile of quantum cascade lasers (QCLs). Conspicuous cascade half-loop damage strips on front facet are observed when QCLs catastrophically failed. Due to the large difference on thermal conductivities between active region and the substrate, dominant heat is compulsively driven to the substrate. Abundant heat accumulation and dissipation on substrate build large temperature gradient and thermal lattice mismatch. Thermal-induced stress due to sequential mismatch leads to the occurrence of the multistep damages on front facet. Good agreement is achieved between the observed locations of damaged strips and the calculated results.
Resumo:
The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.
Resumo:
A 7.8-mu m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm(-1). Using a pi phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.