967 resultados para Variational methods for second-order elliptic equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a large-scale systematics of charge densities, excitation energies and deformation parameters For hundreds of heavy nuclei The systematics is based on a generalized rotation vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation. (C) 2010 Elsevier B V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we have studied the surface morphology of photo-irradiated poly(p-phenylene vinylene) (PPV) thin films by using atomic force microscopy (AFM). We have analyzed the first-order statistical parameters, the height distribution and the distance between selected peaks. The second-order statistical analysis was introduced calculating the auto-covariance function to determine the correlation length between heights. We have observed that the photo-irradiation process produces a surface topology more homogeneous and isotropic such as a normal surface. In addition, the polymer surface irradiation can be used as a new methodology to obtain materials optically modified. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study develops a simplified model describing the evolutionary dynamics of a population composed of obligate sexually and asexually reproducing, unicellular organisms. The model assumes that the organisms have diploid genomes consisting of two chromosomes, and that the sexual organisms replicate by first dividing into haploid intermediates, which then combine with other haploids, followed by the normal mitotic division of the resulting diploid into two new daughter cells. We assume that the fitness landscape of the diploids is analogous to the single-fitness-peak approach often used in single-chromosome studies. That is, we assume a master chromosome that becomes defective with just one point mutation. The diploid fitness then depends on whether the genome has zero, one, or two copies of the master chromosome. We also assume that only pairs of haploids with a master chromosome are capable of combining so as to produce sexual diploid cells, and that this process is described by second-order kinetics. We find that, in a range of intermediate values of the replication fidelity, sexually reproducing cells can outcompete asexual ones, provided the initial abundance of sexual cells is above some threshold value. The range of values where sexual reproduction outcompetes asexual reproduction increases with decreasing replication rate and increasing population density. We critically evaluate a common approach, based on a group selection perspective, used to study the competition between populations and show its flaws in addressing the evolution of sex problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a Lorentzian manifold (M, g), an event p and an observer U in M, then p and U are light conjugate if there exists a lightlike geodesic gamma : [0, 1] -> M joining p and U whose endpoints are conjugate along gamma. Using functional analytical techniques, we prove that if one fixes p and U in a differentiable manifold M, then the set of stationary Lorentzian metrics in M for which p and U are not light conjugate is generic in a strong sense. The result is obtained by reduction to a Finsler geodesic problem via a second order Fermat principle for light rays, and using a transversality argument in an infinite dimensional Banach manifold setup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators. The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We apply the second-order skewness formula to a normal model with a generalized parametrization and to an ARMA model. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.