Genericity of Nondegeneracy for Light Rays in Stationary Spacetimes


Autoria(s): GIAMBO, Roberto; GIANNONI, Fabio; PICCIONE, Paolo
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Given a Lorentzian manifold (M, g), an event p and an observer U in M, then p and U are light conjugate if there exists a lightlike geodesic gamma : [0, 1] -> M joining p and U whose endpoints are conjugate along gamma. Using functional analytical techniques, we prove that if one fixes p and U in a differentiable manifold M, then the set of stationary Lorentzian metrics in M for which p and U are not light conjugate is generic in a strong sense. The result is obtained by reduction to a Finsler geodesic problem via a second order Fermat principle for light rays, and using a transversality argument in an infinite dimensional Banach manifold setup.

Identificador

COMMUNICATIONS IN MATHEMATICAL PHYSICS, v.287, n.3, p.903-923, 2009

0010-3616

http://producao.usp.br/handle/BDPI/30590

10.1007/s00220-009-0742-3

http://dx.doi.org/10.1007/s00220-009-0742-3

Idioma(s)

eng

Publicador

SPRINGER

Relação

Communications in Mathematical Physics

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #GENERAL-RELATIVITY #FERMAT PRINCIPLE #MORSE COMPLEX #Physics, Mathematical
Tipo

article

original article

publishedVersion