993 resultados para REVERSIBLE OPTICAL STORAGE
Resumo:
Nonlinear optics has been a rapidly growing field in recent decades since the invention of lasers. The systematic progress in the laser technology increases our efficiency in the generation and control of coherent optical radiations. Nonlinear optics is based on the study ofeffects and phenomena related to the interaction of intense coherent light radiation with matter. Compared to other light sources laser radiation can provide high directionality, high monochromaticiry, high brightness and high photon degeneracy. At such a very intense incident beam, the matter responds in a nonlinear manner to the incident radiation fields, which endows the media :1 characteristic to change the refractive index or absorption coe fflcient of the media or the wavelength, or the frequency of the incident electromagnetic waves. This thesis encompasses the fabrication of nonlinear optical devices based on semiconductor and metal nanostructures. The presented work focus on the experimental and theoretical discussions on nonlinear optical effects especially nonlinear absorption and refraction exhibitted by metal and semiconductor nanostructures
Resumo:
In this thesis the queueing-inventory models considered are analyzed as continuous time Markov chains in which we use the tools such as matrix analytic methods. We obtain the steady-state distributions of various queueing-inventory models in product form under the assumption that no customer joins the system when the inventory level is zero. This is despite the strong correlation between the number of customers joining the system and the inventory level during lead time. The resulting quasi-birth-anddeath (QBD) processes are solved explicitly by matrix geometric methods
Resumo:
The objective of this study is to understand the reasons for the enhancement in aerosol optical depth (AOD) over the Arabian Sea observed during June, July and August. During these months, high values of AOD are found over the sea beyond 10◦ N and adjacent regions. The Arabian Sea is bounded by the lands of Asia and Africa on its three sides. So the region is influenced by transported aerosols from the surroundings as well as aerosols of local origin (marine aerosols). During the summer monsoon season in India, strong surface winds with velocities around 15 m s−1 are experienced over most parts of the Arabian Sea. These winds are capable of increasing sea spray activity, thereby enhancing the production of marine aerosols. The strong winds increase the contribution of marine aerosols over the region to about 60% of the total aerosol content. The main components of marine aerosols include sea salt and sulphate particles. The remaining part of the aerosol particles comes from the western and northern land masses around the sea, of which the main component is transported dust particles. This transport is observed at higher altitudes starting from 600 m. At low levels, the transport occurs mainly from the Indian Ocean and the Arabian Sea itself, indicating the predominance of marine aerosols at these levels. The major portion of the total aerosol loading was contributed by coarse-mode particles during the period of study. But in the winter season, the concentration of coarse-mode aerosols is found to be less. From the analysis, it is concluded that the increase in marine aerosols and dust particles transported from nearby deserts results in an increase in aerosol content over the Arabian Sea during June, July and August.
Resumo:
Gelation provides a unique medium, which often induces organization of molecules resulting in the modulation of their optical, morphological and electronic properties thereby opening a new world of fascinating materials with interesting physical properties at nano- meso- and macroscopic levels. Supramolecular gels based on linear π-systems have attracted much attention due to their inherent optical and electronic properties which find application in organic electronics, light harvesting and sensing. They exhibit reversible properties due to the dynamic nature of noncovalent forces. As a result, studies on such soft materials are currently a topic of great interest. Recently, researchers are actively involved in the development of sensors and stimuli-responsive materials based on self-assembled π-systems, which are also called smart materials. The present thesis is divided into four chapters
Resumo:
The present work emphasizes the use of chirality as an efficient tool to synthesize new types of second order nonlinear materials. Second harmonic generation efficiency (SHG) is used as a measure of second order nonlinear response. Nonlinear optical properties of polymers have been studied theoretically and experimentally. Polymers were designed theoretically by ab initio and semiempirical calculations. All the polymeric systems have been synthesized by condensation polymerization. Second harmonic generation efficiency of the synthesized systems has been measured experimentally by Kurtz and Perry powder method
Resumo:
Light in its physical and philosophical sense has captured the imagination of human mind right from the dawn of civilization. The invention of lasers in the 60’s caused a renaissance in the field of optics. This intense, monochromatic, highly directional radiation created new frontiers in science and technology. The strong oscillating electric field of laser radiation creates a. polarisation response that is nonlinear in character in the medium through which it passes and the medium acts as a new source of optical field with alternate properties. It was in this context, that the field of optoelectronics which encompasses the generation, modulation, transmission etc. of optical radiation has gained tremendous importance. Organic molecules and polymeric systems have emerged as a class of promising materials of optoelectronics because they offer the flexibility, both at the molecular and bulk levels, to optimize the nonlinearity and other suitable properties for device applications. Organic nonlinear optical media, which yield large third-order nonlinearities, have been widely studied to develop optical devices like high speed switches, optical limiters etc. Transparent polymeric materials have found one of their most promising applicationsin lasers, in which they can be used as active elements with suitable laser dyes doped in it. The solid-matrix dye lasers make possible combination of the advantages of solid state lasers with the possibility of tuning the radiation over a broad spectral range. The polymeric matrices impregnated with organic dyes have not yet widely used because of the low resistance of the polymeric matrices to laser damage, their low dye photostability, and low dye stability over longer time of operation and storage. In this thesis we investigate the nonlinear and radiative properties of certain organic materials and doped polymeric matrix and their possible role in device development
Resumo:
Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers
Resumo:
Although the main application of optical fibers are in the field of telecommunication, optical fiber based sensors of various designs are becoming valuable devices for wide industrial applications. The advantages of optical fiber-based sensors include high sensitivity, insensitivity to electromagnetic radiation; spark free, light weight and minimal intrusiveness due to their relatively small size and deployment in harsh and hostile environments. It has been proved that POI-7 based sensors can be employed to detect a great variety of parameters including temperature, humidity, pressure, refractive index etc. The proposed thesis presented in six chapters deals with the work carried on dye doped and undoped POF for photonic device applications such as amplifier, laser and sensor
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, quantum computing and nanotechnology. Low power circuits implemented using reversible logic that provides single error correction – double error detection (SEC-DED) is proposed in this paper. The design is done using a new 4 x 4 reversible gate called ‘HCG’ for implementing hamming error coding and detection circuits. A parity preserving HCG (PPHCG) that preserves the input parity at the output bits is used for achieving fault tolerance for the hamming error coding and detection circuits.
Resumo:
Reversibility plays a fundamental role when logic gates such as AND, OR, and XOR are not reversible. computations with minimal energy dissipation are considered. Hence, these gates dissipate heat and may reduce the life of In recent years, reversible logic has emerged as one of the most the circuit. So, reversible logic is in demand in power aware important approaches for power optimization with its circuits. application in low power CMOS, quantum computing and A reversible conventional BCD adder was proposed in using conventional reversible gates.
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, nanotechnology and quantum computing. This research proposes quick addition of decimals (QAD) suitable for multi-digit BCD addition, using reversible conservative logic. The design makes use of reversible fault tolerant Fredkin gates only. The implementation strategy is to reduce the number of levels of delay there by increasing the speed, which is the most important factor for high speed circuits.
Resumo:
This paper presents a performance analysis of reversible, fault tolerant VLSI implementations of carry select and hybrid decimal adders suitable for multi-digit BCD addition. The designs enable partial parallel processing of all digits that perform high-speed addition in decimal domain. When the number of digits is more than 25 the hybrid decimal adder can operate 5 times faster than conventional decimal adder using classical logic gates. The speed up factor of hybrid adder increases above 10 when the number of decimal digits is more than 25 for reversible logic implementation. Such highspeed decimal adders find applications in real time processors and internet-based applications. The implementations use only reversible conservative Fredkin gates, which make it suitable for VLSI circuits.
Resumo:
Unprocessed seafood harbor high number of bacteria, hence are more prone to spoilage. In this circumstance, the use of spice in fish for reduction of microorganism can play an important role in seafood processing. Many essential oils from herbs and spices are used widely in the food, health and personal care industries and are classified as GRAS (Generally regarded as safe) substances or are permitted food additives. A large number of these compounds have been the subject of extensive toxicological scrutiny. However, their principal function is to impart desirable flavours and aromas and not necessarily to act as antimicrobial agents. Given the high flavour and aroma impact to plant essential oils, the future for using these compound as food preservatives lies in the careful selection and evaluation of their efficacy at low concentrations but in combination with other chemical preservatives or preservation processes. For this reason they are worth of study alone or in combination with processing methods in order to establish if they could extend the shelf-life of foods. In this study, the effect of the spices, clove, turmeric, cardamom, oregano, rosemary and garlic in controlling the spoilage and pathogenic bacteria is investigated. Their effect on biogenic amine formation in tuna especially, histamine, as a result of bacterial control is also studied in detail. The contribution of spice oleoresin in the sensory and textural parameters is investigated using textural profile analysis and sensory panel. Finally, the potential of spices in quality stabilization and in increasing the shelf–life of tuna during frozen storage is analysed
Resumo:
The toluene diisocyanate based optically active chiral polyurethanes were synthesized according to the symmetry conditions. The noncentrosymmetric (both charge asymmetry and spatial asymmetry) environment were attained by the incorporation of the chiral units (diethyl-(2R,3R)(þ)-tartrate) and donor-acceptor building blocks in the main chain which induce a helical conformation in the macromolecular chain. A series of optically active polyurethanes containing chiral linkages in the polymer back bone have been synthesized by using DBTDL catalyst by incorporating the amido diols which were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane, and diaminohexane respectively. The effect of incorporation of the chiral molecule diethyl-(2R,3R)(þ)-tartrate on the properties of polyurethanes was studied by changing the chromophores and also by varying the chiral-chromophore composition. Various properties of polyurethanes were investigated by UV, Fluorescence, TG/DTA, XRD, polarimetric techniques, Kurtz-Perry powder techniques, etc.
Resumo:
A new class of chiral polyurethanes containing amido linkages in the polymer backbone have been synthesized by reacting toluene diisocyanate with isosorbide (IS) chiral moiety and the chromophores [N,N0-ethane- 1,2-diyl bis(6-hydroxy hexanamide), N,N0-butane-1,4-diyl bis(6-hydroxy hexanamide) and N,N0-hexane-1,6-diyl bis (6-hydroxy hexanamide)]. The corresponding chromophores were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane and diaminohexane, respectively. All the polymers were synthesized according to the symmetry conditions so as to obtain the non-centrosymmetric environment. A series of polyurethanes were synthesized by varying the chiral– chromophore composition. The polyurethanes developed were characterized by optical and thermal methods.