980 resultados para Industrial technologies
Resumo:
This paper provides an overview of the current field in wireless networks for monitoring and control. Alternative wireless technologies are introduced, together with current typical industrial applications. The focus then shifts to wireless Ethernet and the specialised requirements for wireless networked control systems (WNCS) are discussed. This is followed by a brief look at some current WNCS research, including reduced communication control.
Resumo:
This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Six polyclonal antisera to chloramphenicol (CAP) were successfully raised in camels, donkeys and goats. As a comparison of sensitivity, IC50 values ranged from 0.3 ng mL(-1) to 5.5 ng mL(-1) by enzyme-linked immunosorbent assay (ELISA) and from 0.7 ng mL(-1) to 1.7 ng mL(-1) by biosensor assay. The introduction of bovine milk extract improved the sensitivity of four of the antisera by ELISA and two by biosensor assay; a reduction in sensitivity of the remaining antisera ranged by a factor of 1.1-2.6. Porcine kidney extract reduced the sensitivity of all the antisera by a factor ranging from 1.1 to 7 by ELISA and a factor of 1.5 to 4 by biosensor. A low cross-reactivity with thiamphenicol (TAP) and florfenicol (FF) was displayed by antiserurn G2 (1.2% and 18%, respectively) when a homologous ELISA assay format was employed. No cross-reactivity was displayed by any of the antisera when a homologous biosensor assay format was employed. Switching to a heterologous ELISA format prompted three of the antisera to display more significant cross-reactivity with TAP and FF (53% and 82%, respectively, using Dl). The heterologous biosensor assay also increased the cross-reactivity of D1 for TAP and FF (56% and 129%, respectively) and of one other antiserum (Gl) to a lesser degree. However, unlike the ELISA, the heterologous biosensor assay produced a substantial reduction in sensitivity (by a factor of 6 for D1). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the fabrication of SSOI (Silicon on Silicide On Insulator) substrates with active silicon regions only 0.5mum thick, incorporating LPCVD low resistivity tungsten silicide (WSix) as the buried layer. The substrates were produced using ion splitting and two stages of wafer bonding. Scanning acoustic microscope imaging confirmed that the bond interfaces are essentially void-free. These SSOI wafers are designed to be employed as substrates for mm-wave reflect-array diodes, and the required selective etch technology is described together with details of a suitable device.
Resumo:
A simple approach to sensor development based on encapsulating a probe molecule in a cellulose support followed by regeneration from an ionic liquid solution is demonstrated here by the codissolution of cellulose and 1-(2-pyridylazo)-2-naphthol in 1-butyl-3-methylimidazolium chloride followed by regeneration with water to form strips which exhibit a proportionate (1 : 1) response to Hg(II) in aqueous solution.
Resumo:
The potential to use Ionic Liquids (ILs) as novel solvents or fluids for a diverse range of applications has become increasingly rent as researchers in academia and try respond to challenges from atmospheric emissions and disposal of many common solvents by evaluating novel reaction media. The intrinsic non-volatile nature of ILs provides an opportunity to reduce, or even completely eliminate, hazardous and toxic emissions to the atmosphere, thus providing the promise for significant environmental benefits. In synthesis and catalysis, ILs have been used as solvents (or solvents and catalysts), with the greatest current effort on using the ILs as alternatives to VOCs. In contrast, electrochemical studies hove utills'ed the fact that ILs are liquid rather than solids to provide liquid electrolytes without needing to odd an additional solvent. is overview appraiso an appraisal of potential to use ILs in industrial applications, illustrating some areas where practical uses are being developed, and how, throuqh understanding ionic liquids in a conceptuo level, new opportunities ore continuing to evolve.