1000 resultados para HfO2 films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide (ZnO) films with c-oriented were grown on fused quartz glass substrates at room temperature using dc reactive magnetron sputtering. The as-grown films were annealed at 700 degrees C in air and bombarded by ion beam, respectively. The effects of post-treatments on the structural and optical properties of the ZnO films were investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. The XRD spectra indicate that the crystal quality of ZnO films has been improved by both the post-treatments. Compared with the as-grown sample, both annealed and bombarded samples exhibited blueshift in the UV emission peaks, and a strong green emission was found in the annealed ZnO film. In both optical transmittance and absorption spectra, a blueshift of the band-gap edge was observed in the bombarded film, while a redshift was observed in the annealed film. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of oxygen partial pressure on the structure and photoluminescence (PL) of ZnO films were studied. The films were prepared by direct current (DC) reactive magnetron sputtering with various oxygen concentrations at room temperature. With increasing oxygen ratio, the structure of films changes from zinc and zinc oxide phases, single-phase ZnO, to the (002) orientation, and the mechanical stresses exhibit from tensile stress to compressive stress. Films deposited at higher oxygen pressure show weaker emission intensities, which may result from the decrease of the oxygen vacancies and zinc interstitials in the film. This indicates that the emission in ZnO film originates from the oxygen vacancy and zinc interstitial-related defects. From optical transmittance spectra of ZnO films, the plasma edge shifts towards the shorter wavelength with the improvement of film stoichiometry. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO2 laser irradiation experiments on ZnO thin films are reported. The structural, optical, luminescent and vibrational properties of the samples were investigated by X-ray diffraction (XRD), transmittance, photoluminescence (PL) and Raman measurements. XRD results show that the crystalline of the irradiated films was improved. The (002) peaks of irradiated ZnO films shift to. higher 20 angles due to the stress relaxation in the case of laser beam irradiation. From optical transmittance spectra, all films exhibit high transmittance in the visible range, the optical band edge of irradiated films showed a redshift compared with that of as-grown films. Compared with the as-grown films, the photoluminescence emission (in particular the relative intensities of visible emissions) intensities of irradiated samples enhanced. In the Raman scattering spectral both the A I. and E modes exhibited slight Raman blueshift. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO:Zn phosphor thin films were prepared by face-to-face annealing at 450 degrees C in air. The effects of the face-to-face annealing on the structural and optical properties of the ZnO films were investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. Measurement results showed that the crystal quality of ZnO films was improved by face-to-face annealing. Both UV light emission and visible light emission were enhanced compared to those of open annealing films. The UV emission peak was observed to have a blueshift towards higher energy. The optical band-gap edge of as-annealed films shifted towards longer wavelength. (c) 2005 Elsevier B.V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical absorption edge and ultraviolet (UV) emission energy of ZnO films deposited by direct current (DC) reactive magnetron sputtering at room temperature have been investigated. With the oxygen ratio increasing, the structure of films changes from zinc and zinc oxide coexisting phase to single-phase ZnO and finally to the highly (002) orientation. Both the grain size and the stress of ZnO film vary with the oxygen partial pressure. Upon increasing the oxygen partial pressure in the growing ambient, the visible emission in the room-temperature photoluminescence spectra was suppressed without sacrificing the band-edge emission intensity in the ultraviolet region. The peaks of photoluminescence spectra were located at 3.06---3.15 eV. From optical transmittance spectra of ZnO films, the optical band gap edge was observed to shift towards shorter wavelength with the increase of oxygen partial pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absorption of host and the temperature-dependence of absorption coefficient have been considered in evaluating temperatures distribution in films, when laser pulse irradiates on films. Absorption of dielectric materials experience three stages with the increase of temperature: multi-photon absorption; single photon absorption; metallic absorption. These different absorption mechanisms correspond to different band gap energies of materials, which will decrease when the temperature of materials increases. evaluating results indicate that absorption of host increases rapidly when the laser pulse will be over. If absorption of host and the temperature-dependence of absorption are considered, the material temperatures in films will be increased by a factor of four.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of alumina and chromium interlayers on the microstructure and optical properties of thin Ag films are investigated by using spectrophotometry, x-ray diffraction and AFM. The characteristics of Ag films in Ag/glass, Ag/Al2O3/glass and Ag/Cr/glass stacks are analysed. The results indicate that the insertion of an Al2O3 or Cr layer decreases the grains and influences the reflectance of Ag films. The reflectance of the Ag film can be increased by controlling the thickness of alumina interlayer. The stability of Ag films is improved and the adhesion of Ag films on glass substrates is enhanced by alumina as an interlayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al2O3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 degrees C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 degrees C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 and ZrO2 films are deposited by electron-beam (EB) evaporation and by sol-gel process. The film properties are characterized by visible and Fourier-transform infrared spectrometry, x-ray diffraction analysis, surface roughness measure, absorption and laser-induced damage threshold (LIDT) test. It is found that the sol-gel Elms have lower refractive index, packing density and roughness than EB deposited films due to their amorphous structure and high OH group concentration in the film. The high LIDT of sol-gel films is mainly due to their amorphous and porous structure, and low absorption. LIDT of EB deposited film is considerably affected by defects in the Elm, and LIDT of sol-gel deposited film is mainly effected by residual organic impurities and solvent trapped in the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 films deposited by electron beam evaporation with glancing angle deposition (GLAD) technique were reported. The influence of flux angle on the surface morphology and the microstructure was investigated by scanning electron microscopy. The GLAD TiO2 films are anisotropy with highly orientated nanostructure of the slanted columns. With the increase of flux angle, refractive index and packing density decrease. This is caused by the shadowing effect dominating film growth. The anisotropic structure of TiO2 films results in optical birefringence, which reaches its maximum at the flux angle alpha = 65 degrees. The maximum birefringence of GLAD TiO2 films is higher than that of common bulk materials. It is suggested that glancing angle deposition may offer an effective method to obtain tailorable refractive index and birefringence in a large continuous range. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 films are deposited by electron beam evaporation as a function of oxygen partial pressure. The packing density, refractive index, and extinction coefficient all decrease with the increase of pressure, which also induces the change of the film's microstructure, such as the increase of voids and H2O concentration in the film. The laser-induced damage threshold (LIDT) of the film increases monotonically with the rise of pressure in this experiment. The porous structure and low nonstoichiometric defects absorption contribute to the film's high LIDT. The films prepared at the lowest and the highest pressure show nonstoichiometric and surface-defects-induced damage features, respectively.(C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HfO2 single layers, 800 run high-reflective (HR) coating, and 1064 ran HR coating were prepared by electron-beam evaporation. The laser-induced damage thresholds (LIDTs) and damage morphologies of these samples were investigated with single-pulse femtosecond and nanosecond lasers. It is found that the LIDT of the HfO2 single layer is higher than the HfO2-SiO2 HR coating in the femtosecond regime, while the situation is opposite in the nanosecond regime. Different damage mechanisms are applied to study this phenomenon. Damage morphologies of all samples due to different laser irradiations are displayed. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZrO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on structure and related properties of ZrO2 thin films were studied. Transmittance, thermal absorption, structure and residual stress of ZrO2 thin films were measured by spectrophotometer, surface thermal lensing technique (STL), X-ray diffraction and optical interferometer, respectively. The results showed that the structure and related properties varied progressively with the increase of oxygen partial pressure. The refractive indices and the packing densities of the thin films decreased when the oxygen partial pressure increased. The tetragonal phase fraction in the thin films decreased gradually as oxygen partial pressure increased. The residual stress of film deposited at base pressure was high compressive stress, the value decreased with the increase of oxygen partial pressure, and the residual stress became tensile with the further increase of oxygen pressure, which was corresponding to the evolution of packing densities and variation of interplanar distances. (c) 2007 Elsevier B.V. All rights reserved.