986 resultados para tablet formulations
Resumo:
In this study, polymeric nanocapsules of PCL containing the herbicide atrazine were prepared. In order to optimize the preparation conditions, a 2³ factorial design was performed using different formulations of nanocapsules, which investigated the influence of three variables at two levels. The factors varied were the quantities of PCL, Span 60 and Myritol. The results were evaluated considering the size, polydispersity, zeta potential and association rate and the measures of these parameters were taken immediately after preparation and after 30 days of preparation. The formulations with minimum level of polymer in the preparation showed better stability results.
Resumo:
A method using liquid chromatography has been developed and validated for determination of buclizine in pharmaceutical formulations and in release studies. Isocratic chromatography was performed on a C18 column with methanol:water (80:20 v/v, pH 2.6) as mobile phase, at a flow rate of 1.0 mL/min, and UV detection at 230 nm. The method was linear, accurate, precise, sensible and robust. The dissolution test was optimized and validated in terms of dissolution medium, apparatus agitation and rotation speed. The presented analytical and dissolution procedures can be conveniently adopted in the quality and stability control of buclizine in tablets and oral suspension.
Resumo:
This study aims to develop and evaluate formulations containing ampicillin in capsules of gelatin and hydroxypropyl methylcellulose (HPMC). Two formulations (A and B) were developed. The final product quality was evaluated by testing for quality control and the results were in agreement with the Brazilian Pharmacopoeia. The formulations with HPMC capsules showed lower percentages of drug dissolved (99.67%, HPMC-A and 87.70%, HPMC-B) than the gelatin (100.18%, GEL-A and 101.16% GEL-B). Because of the delay of the ampicillin release observed in the dissolution profiles, it becomes necessary to evaluate the drugs that can be conditioned in the HPMC capsules.
Resumo:
Simple, sensitive and accurate spectrophotometric derivative methods were developed for the simultaneous determination of olanzapine and fluoxetine hydrochloride in pharmaceutical formulations by derivative spectrophotometry. On all orders of derivative studied, the linear response range was 10 to 60 mg L-1, with limit of quantitation (LoQ) ranging from 0.73 to 1.49 mg L-1 for fluoxetine hydrochloride and from 0.18 to 0.96 mg L-1 for olanzapine. The best orders for derivative analyses showed recoveries ranging from 99 to 103% and from 98 to 100%, and inter-day accuracy < 2.1% and < 2.8%, for fluoxetine hydrochloride and olanzapine, respectively.
Resumo:
In this work, theospheres (innovative lipid nanoparticles) were prepared by the high pressure homogenization technique using different surfactants for dapsone encapsulation. Mean particle size ranged from 105 to 153 nm and negative zeta potentials were obtained for all theosphere formulations. Atomic force microscopy images confirmed the spherical shape of theospheres. The HPLC method used to determine dapsone-loaded theospheres was selective, linear, exact and precise. The entrapment efficiency of dapsone was 91.4%. Theospheres provided controlled release of idebenone (52.7 ± 1.6%) in comparison to the free drug (103.1 ± 1.9%).
Resumo:
A simple flow system with multiple pulse amperometric detection using a single working electrode is proposed for simultaneous determination of ascorbic (AA) and acetylsalicylic (AAS) acids in pharmaceutical formulations. The procedure is based on application of two potential pulses: 0.90 V/50 ms: oxidation and determination of AA without the interference of AAS; 1.35 V/50 ms: oxidation of both compounds and quantification of AAS by current subtraction using a correction factor. Sampling rate was estimated as 125 injections per hour and the limits of detection were 0.17 and 0.16 µmol L-1 for AA and AAS, respectively. Results for commercial samples agreed with those obtained using HPLC.
Indirect spectrophotometric method for determination of captopril using Cr(VI) and diphenylcarbazide
Resumo:
A spectrophotometric method for the indirect determination of captopril (CP) in pharmaceutical formulations is proposed. The proposed procedure is based on the oxidation of captopril by potassium dichromate and the determination excess oxidant on the basis of its reaction with diphenylcarbazide (DPC). Under the optimum conditions, a good linear relationship (r = 0.9997) was obtained in the range of 0.08-3.5 µg mL-1. The assay limits of detection and quantitation were 0.024 and 0.08 µg mL-1, respectively. The results obtained for captopril determination in pharmaceuticals using the proposed method and those obtained with the US Pharmacopoeia method were in good agreement at the 95% confidence level.
Resumo:
Lipid nanoemulsions have recently been proposed as parenteral delivery systems for poorly-soluble drugs. These systems consist of nanoscale oil/water dispersions stabilized by an appropriate surfactant system in which the drug is incorporated into the oil core and/or adsorbed at the interface. This article reviews technological aspects of such nanosystems, including their composition, preparation methods, and physicochemical properties. From this review, it was possible to identify five groups of nanoemulsions based on their composition. Biopharmaceutical aspects of formulations containing some commercially available drugs (diazepam, propofol, dexamethasone, etomidate, flurbiprofen and prostaglandin E1) were then discussed.
Resumo:
Poorly soluble drugs have low bioavailability, representing a major challenge for the pharmaceutical industry. Processing drugs into the nanosized range changes their physical properties, and these are being used in pharmaceutics to develop innovative formulations known as Nanocrystals. Use of nanocrystals to overcome the problem of low bioavailability, and their production using different techniques such as microfluidization or high pressure homogenization, was reviewed in this paper. Examples of drugs, cosmetics and nutraceutical ingredients were also discussed. These technologies are well established in the pharmaceutical industry and are approved by the Food and Drug Administration.
Resumo:
To assess topical delivery studies of glycoalkaloids, an analytical method by HPLC-UV was developed and validated for the determination of solasonine (SN) and solamargine (SM) in different skin layers, as well as in a topical formulation. The method was linear within the ranges 0.86 to 990.00 µg/mL for SN and 1.74 to 1000.00 µg/mL for SM (r = 0.9996). Moreover, the recoveries for both glycoalkaloids were higher than 88.94 and 93.23% from skin samples and topical formulation, respectively. The method developed is reliable and suitable for topical delivery skin studies and for determining the content of SN and SM in topical formulations.
Resumo:
A simple, precise, specific, repeatable and discriminating dissolution test for primaquine (PQ) matrix tablets was developed and validated according to ICH and FDA guidelines. Two UV assaying methods were validated for determination of PQ released in 0.1 M hydrochloric acid and water media. Both methods were linear (R²>0.999), precise (R.S.D.<1.87%) and accurate (97.65-99.97%). Dissolution efficiency (69-88%) and equivalence of formulations (f2) was assessed in different media and apparatuses (basket/100 rpm and paddle/50 rpm) tested. Discriminating condition was 900 mL aqueous medium, basket at 100 rpm and sampling times at 1, 4 and 8 h. Repeatability (R.S.D.<2.71%) and intermediate precision (R.S.D.<2.06%) of dissolution method were satisfactory.
Resumo:
A fast analytical method for determination of hydroquinone in pharmaceutical formulations employing batch injection analysis (BIA) with amperometric detection using a boron-doped diamond electrode is described. The supporting electrolyte was a 0.1 mol L-1 H2SO4 solution (the single reagent used for analysis). The method showed good repeatability (RSD of 0.45%, n=20), wide linear range (from 10 to 2000 µmol L-1, R=0.9999), low detection limit (0.016 µmol L-1) and satisfactory recovery values (91-96%). Accuracy of the method was evaluated by comparative analyses using high-performance liquid-chromatography. The ability to replace the electronic pipette by disposable syringes (injection procedure) in BIA systems was also shown.
Resumo:
The influence of the composition and preparation method on the sol-gel transition temperature (Tsol-gel) and rheological response of poloxamer-based formulations was determined. Manual and more complex mechanical stirring were found to provide similar results. In addition, a linear dependence of Tsol-gel on the poloxamer content was observed in the range of concentrations analyzed, and a Poloxamer 407® concentration of 18% was selected. The addition of hyaluronic acid did not lead to significant changes in the Tsol-gel values. In contrast, the addition of microparticles caused a reduction in Tsol-gel without a significant reduction in gel strength, and pseudoplastic characteristics were observed, indicating that a thermoreversible gel was obtained with a rheology suitable for application in the treatment of burn wounds.
Resumo:
A simple and fast method for the determination of nimesulide (NI) using flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection at a boron-doped diamond (BDD) electrode was developed. The method was based mainly on the application of a four-potential waveform, E1(det) = -0.8 V / 30 ms, E2(det) = 0.6 V / 30 ms, E3(det) = -0.4 V / 30 ms and E4(cleaning) = -0.45 V / 300 ms versus Ag/AgCl (3.0 mol L-1 KCl). NI was detected at three different electrode potentials, at which the nitro group undergoes different redox reactions. The proposed method was selective and sensitive (detection limit of 81.0 nmol L-1), and successfully applied for the determination of NI in pharmaceutical formulations, yielding similar results to those obtained by the reference method.
Resumo:
Several studies have described the benefits of nanoscience and nanotechnology (N&N) in different sectors such as agriculture, energy, environmental preservation, and public health. The rapid evolution of N&N can be shown through a panoramic analysis of scientific papers and patents. In the area of public health, it is estimated that the global market for nanotechnology products will expand to 160 billion U.S. dollars in 2015. The Brazilian government has also strengthened its innovative potential in N&N through economic subsidies, as observed for other countries. This review is focused on the current landscape of N&N in a therapeutic context, highlighting the development of nanotech-products produced with biocompatible and biodegradable materials that are already commercially available or under investigation. Most studies under investigation are focused on the development of nanotechnology-based formulations intended for treatment of cancer, inflammatory, cardiovascular, and neurological diseases. Although there are several advantages of N&N in healthcare, many challenges have to be conquered to increase the availability of nanotechnology products in toxicological, preclinical and clinical studies, scale-up, regulatory, and private investments.